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ABSTRACT

A new-lower bound for fixed charge, uncapacitated, multicommodity
network design problems is presented. This bound is significantly
tighter than the simple LP relaxation of the problem. An upper bound
(and a candidate network design) is produced using a link inclusion
heuristic. The lower and upper bounding procedures are incorporated
into an implicit enumeration algorithm. This algorithm is applied to
the load planning problem of less-than-truckload (LTL) motor carriers.
Computational results show that the algorithm compares favorably with

other methods reported in the literature.



INTRODUCT 10N

Fixed charge network desiagn oroblems concern flows over links which
cannot be used before a quantum level of cost is incurred. This quantum may
represent, for examnle, capital investment of a new facility or the minimum
level of rescurces necessary to operate a given service.

The work reported here is motivated by the load planning problems of
less-than-truckload (LTL) motor carriers. These carriers haul freight
from many origings to many destinations. The freight is collected in city
terminals and carried to one or more breakbulk (transshipment) terminals
where it is sorted and reconsolidated. It is then moved to destination city
terminals where it is distributed to the individual customers. The load
nlanning nroblem concerns the structure of the network used to haul the freight
between these terminals. Thus the relevant network includes the terminals as
nodes and the direct services between them as links. As argued by Powell and
Sheffi (1983), a direct service between any two terminals is always operated
with certain minimum frequency. Consequently, the carrier's problem of deciding
which links to include in the network can be viewed as a fixed charge network
design problem. The pfob1em is uncapacitated since beyond the minimum
frequency, each 1link can carry practically any flow level. It has multi-
commodity aspects, since shipments between every origin-destination pair
represent a distinct flow.

As shown by Johnson et al (1978), network design problems are NP-hard,
meaning that (probably) no efficient solution procedure exists for large scale
networks. Some of the largest networks for which optimal solutions have been
obtained are reported by Magnanti, Mireault, and Wong (1984) and by Barr,
Glover, and Klinaman (1981). Magnanti et al applied Bender's decomposition to
obtain optimal network design solutions for uncapacitated general networks

containing 30 nodes and 90 fixed-charge links. Barr et al tailored the



hrancn-and-oound penalty procedure proposed by Oriebeek (]

W

66) to obtain
optimal solutions for uncapaciated bipartite (i.e. transportation-tyce)
networks containing 50 source nodes, 150 sink nodes, and 600 fixed-charge
1inks.

For large-scale network design problems (involving, say, over 50 nodes
and 1000 fixed-charge links), analysts have typically relied on heuristic
procedures to provide near-optimal solutions. For example, Powell and Sheffj
(1983) used a local improvement heuristic for uncapaciated network design

problems with fixed-plus-piecewise linear 1link cost functions to optimize

networks containing more than 300 nodes and 18,000 such links. [An interactive
optimization model for this same problem, which is being used in practice

by a major carrier, is described by Sheffiand Powell (1985).] Wong (1980)
used a link inclusion heuristic procedure for uncapaciated problems with a
budget constraint for networks containing 100 nodes and nearly 5000 fixed-
charge links. Steenbrink (1974) applied an incremental traffic assignment
heuristic for network design problems with Tink capacities and nonlinear link
cost functions to obtain a feasible design for a network containing approxi-
mately 2000 nodes and 6000 links. A comprehensive review of other exact and
heuristic procedures for network design problems has been compiled by Magnanti
and Wong (1984a).

This paper presents an implicit enumeration (branch and bound) method for
obtaining near-optimal network designs for uncapacitated, multicommodity
problems. The focus cf the paper is on a procedure for calculating lower
bounds. This procedure generates bounds which are significantly tighter than
the simple linear programming (LP) relaxation. Coupled with a network design
heuristic (which generates a cost upper bound), the implicit enumeration
provides solutions which compare favorably with other methods reported in the

literature.



This paper is orgcanized as follows. Section 1 discusses tne problem
formulation and outlines a solution procedure. Section 2 focuses on the
development of a Tower bound. Section 3 presents the lower bound algorithm
and a heuristic algorithm for obtaining an upper bound. Section 4 describes
the implicit enumeration procedure, and Section 5 reports some comparative

numerical results.
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This section is comprised of three parts. The first formulates tne fixed

charge network design problem addressed here as an integer program (IP), the
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second discusses an LP relaxation of thisformulation, and the third outlines

the solution methodology for the I[P (which uses the LP relaxation).

e IP Formulation

The following notation is used to define the problem. Let

set of nodes with generic element n

set of directed arcs with generic element a

set of origin-destination (0D) pairs ("markets") with generic element m

< 1> 1 =
"

The freight movement demand is characterized by a market flow vector,
0 i Qe «es). The units of this demand are, for example, CWT/week or
cubic feet/day. |

A1l arcs in this problem are design elements. Each arc, a, is associated
with a fixed charge, fa, and a variable cost, Cyv In the application discussed
here, fa stems from the minimum service requirement, while Cy represents the
(average) marginal cost of hauling freight over arc a. Figure 1 shows the arc
cost as a function of flow for a typical arc.

To characterize the decision variables here, let ¥ = 1 if 1ink a is in
the network, and s = 0 otherwise. Also let Ry m ™ 1 if 1ink a carries flow
9 (i.e., if it is used to carry flow between the origin and the destination
associated with the m-th 0D pair), and x

a,m
is the network design vector, and x = (..., x

0 otherwise. Thus y = (..., y,,..

a,m"") is the flow routing
vector.

The vector of link flows v = (..., vy ...) can be expressed as



[Wnen no otner indication is given, the notation "2" and "¥"' refer to all

members of the relevant set. Thus in eq. (1), ”‘m” is equivalent to "z_ "
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and "¥a" is equivalent to "¥ azA".] A parameter used later in the program

formulation is the capacity of each arc, denoted by the vector g = (vewy U

-
——
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Since the problem discussed aere is not naturally capacitated, u, can be

defined as the largest possible value that v, can attain. Depending on the
network structure, this maximum may be equal to or less than the combined
shipping demand for the entire network (i.e., qum).

To formulate the flow conservation constraints, let I(a) and J(a) denote the
"from" node and "to" node, respectively, of arc a (i.e. if I(a) = i and J(a) = j,
then arc a goes from node i to node j where aeﬁ and 1,jay). Similarly, let O(m) and
D(m) define the origin and destination nodes, respectively, for market m (i.e.
if O(m) = r and D(m) = s, then market m includes flow from node r to node S,
where me@ and r,Seﬁ}. In addition, let en be the set of arcs whose "from"
node is n (i.e., ae&n if I(a) = n), and let ?n be the set of arcs whose "to"
node is n (i.e. aegn if J(a) = n),

The multicommodity network flow conservation constraints can now be

written as
( \
1 if n=0(m)
g B ® B By " (-1 if n = 0(m) ) ¥ n,m (2a)
achA aEBn
= = 0 for all other neN
\ -
xa’m > 0 ¥ a,m (2b)

To avoid repeating this set of constraints throughout the paper, let 5 define

the set of routing-vectors X2 s mm X3 .m? ...) that comply with egs. (2).



The fixed charge network design problem (P) can now be stated as the

following integer program:

Dwagram P:

T;n &= ; ; €a I %a,m T F fas (32)
subject to

2 Mka < Yaba ¥a (3b)
m

y,e{0,1} ¥a (3c)

Let (ﬁf{x*) denote the optimal solution vector, let z* denote the
optimal objective function value, and let v* denote the optimal 1ink flow
vector for program P. The objective function (3a) in this program minimizes
the total system costs, including both variable and fixed charges over all the
1inks in the network. Carrying the minimization over § guarantees that the
feasible solutions are restricted to directed paths over the network.
Constraints (3b) guarantees that a 1link carries flow only if it is in the
network, and constraints (3c) ensure the integrality of the decision variables.
[Even without a specific constraint, it will always be the case that xa’me£O,1}¥a,m
due to the network structure of the problem]

Note that alternatively constraints (3b) can be written in a disaggregate
form:

X 5 Yy ¥ a,m (4)

While this form generates a tighter LP relaxation than the LP relaxation of P,
the advantage of using constraint (3b) is that the LP relaxation is then
particularly easy to solve. This ease is exploited in the procedure which

calculates the lower bound for P, as shown in Section 2,



@ LP Relaxation

The Tinear programming relaxation is formed by replacing constraints (3¢)

with the nonnegativity constraints

¥, * Q ¥ a (5)

Let P denote the LP relaxation of P. Let x*, V*, and z* denote the optimal
values of the routing decision variables, the arc flows, and the objective
function, respectively, in program P, Note that constraints (5) can be omitted
from P since the nonnegativity of {ya} is ensured by constraints (3b) and the
nonnegativity of x (which is required in the set X).

To see how program P can be solved, note that it can be expressed

equivalently as

The equivalence between program P as formulated in (6) and its original
formulation [(3a), (3b)] can be shown on the basis of Balinski's (1961)
observation that constraints (3b) will always be satisfied with equality in
the optimal solution of P. Since u_. > 0 ¥ a, constraint (3b) can be solved

a
expliqit1y for ¥, @

q_x (7)

m~a,m

el

A
This expression can be substituted for P in the objective function (3a) to
obtain the formulation of P given in (6).

[The equivalency between the original formulation of P and that given in
(6) can also be shown by forming a Lagrangian relaxation of the original
formulation with respect to constraint (3b). Since the variables {y,} are
unconstrained in the original formulation, the objective function of the
Lagrangian will remain finite only if the value of the dual variable associated

with each constraint in (3b) is equal to fa/ua. The formulation in (6)

follows immediately.]



As mentioned in connection with eq. (4), srogram P is easy to solve. The
reason is that it decomposes by origin (and by QD pair) into a set of
independent shortest path problems (with flow assignment). Thus this program
can be solved by a many-to-many algorithm (e.q. Floyd (1962)) or by repeated
application of a one-to-many algorithm (e.g. Moore (1357)). These algorithms,
coupled with recent 1ist processing techniques (see, for example, Glover et al
(1974)) are very efficient. Consequently, P can be solved repeatedly in the
course of finding both a lower bound and an upper bound to the optimal

solution of the integer program, P.

e Preview of Solution Procedure

The implicit enumeration used in this paper is based on a branch and
bound (B & B) procedure in which a lTower bound is generated at each node of
the B & B tree. This lower bound can be improved iteratively, up to a point
at which a decision to branch is reached (if no fathoming occurs). The details
of the procedure are given in Section 4. The following paragraphs outline the
lower bound procedure so that the reader can put the material in Sections 2 and 3 in
perspective.
The lower bound procedure is based on an iterative solution of program P in
which the capacity parameters {ua} are systematically reduced. To describe
the process, let P(u) denote program P with parameter vector u = (..., ua,,...).

The optimal value of the objective function of this program is ?*(g).

+

For a given set of parameters g’ e

gf = (v, U ), orogram 3(27) can be
solved to obtain the optimal value E*(HT). If the capacity parameters are
set so that they do not restrict the (unknown) optimal flow vector of the

integer program P (denoted v* = (..., v;, «..)), then E*(Ef) is a valid lower



bound to z*. Moreover, if u < U, then the feasible region of ﬁ(Ef) is
contained within that of P(u), meaning that E*(g;) > z*(u). In other words,
the Tower bound generated by solving 5]37) is better than that generated by
solving P(u) (which is the original LP relaxation).

The lower bound E*(gf) can be tightened by iteratively reducing the value
of u” and solving P(u"). The difficulty here is that for Z*(u') to be a valid
lower bound,gﬁ must be greater than or equal to the unknown optimal solution
vector, v*, The lower bound procedure described in Sections 2 and 3 provides a

mechanism for determining those values of u' that produce high values of z*(u')

while ensuring that z*(ET) is a valid lower bound to z*.
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2. DEVELQOPMENT CF A LOWER BOUND

This section develops a procedure for obtaining a lower bound to tne
optimal value of (the integer program) P by changing the link capacity
parameter vector u. The presentation is divided into three separate parts:
The first presents a capacity improvement program for a single link and discusses
discusses its use, the second outlines and explains an algorithm for solving
this program, and the third demonstrates how the results of this algorithm
can be used to define a lower bound to the optimal objective function

value of the original fixed charge program, P.

e Single Link Capacity Improvement Program

Consider a particular link beA. The following paragraphs describe a

subprogram and a program that are used to obtain a better (smaller) value of

Uy (denoted ub+). The subprogram, referred to as ﬁb(wb)’ is as follows:

Program Fb(wb):

f
minz. (W) = £ £ q_(c. +-2)x (8a)
xeX b*"b ma Mm@ U a,m
subject to
L Xy o2 W (8b)
m 3

Note that program 5B(wb) js focused on the single network arc b. This program

is simply program P(u) augmented with constraint (8b) which forces the flow on

link b to be equal to or greater than the parameter Wy (Note that program Pb(w

b)
is also a function of parameter vector u. The evaluation of Eb(wb)’ however,

will not involve changes in u. Therefore, u is not explicitly denoted as a

parameter_in this program.] Program Fbtwbl can be evaluated
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parametrically as a function of Wi s starting with Wy = 0. As
Wy increases past VE [which is the flow on link b at the optimal solution to
F(u)], program ﬁb(wb) becomes more constrained and its optimal objective
function value, Eg(wb), increases. In the domain

VE < Wy < Uy (9)
EE(Wb) is an increasing function of Wys @s shown in Figure 2. At Wy = VK, the
value of the objective function, Eg(wb),equa1s z* [which is the optimal
objective function of P(u)] since, at this point, constraint (8b) is non-binding.
Now let Egax denote the highest finite value of the objective function, Eg(wb),
as w, approaches Uy from below, as shown in Figure 2. As Wh changes between

v; and Ups the objective function value, Eg(wb) changes between Z* and Egax_
Program Fb(wb) is used as the subprogram to the following program which

is also focused on link beA:

Program'ﬁs(t):

min Wy (10a)
subject to
Eg(wb) >t (10b)

Program Gb(t) is referred to as the single link capacity improvement program,
and the parameter, t, is referred to as the target value. Let Wg(t) denote
the optimal objective function of program Gb(t). Observe that for t in the
domain

Z* <t < Egax (11)

the objective function value, Wg(t),remains finite. It is the minimum amount

of flow that must be carried on link b in order to cause z*

b(wb) to be at least
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as large as t. This objective function vaiue is used to define, ub(t}, tne
new capacity parameter for link b given a target value t. Specifically,
(O for § = z*
ug(t) = Qwe(t) for  Z* <t < (12)
Lub for t > Egax

The function u;(t) is shown in Figure 3. This function can be viewed as the

inverse of the function in Figure 2. That is, one enters with a target value

+

t to obtain a new capacity pafameter Uy

o Single Link Capacity Improvement Algorithm

Once again, consider a particular link beA. For a target value, t, in
domain (11), the calculation of u;(t), the revised capacity parameter for link

b, is based on solving program UE(t). Note that Eg(wb) in constraint (10b)

of program Gb(t) is nonlinear but convex in Wy One method of determining
W;(t) is to selectively increase Wy and solve the linear program Vs(wb) until

the minimum value of Wp such that EE(Wb) > t is obtained. The following

paragraphs, however, describe an efficient method for obtaining Wg(t) directly

for any value of t in domain (11).

The procedure is based on a given solution of P(u). The first step in
the procedure is to determine the cost difference between (i) the optimal

routing of 1 unit of flow in market m (i.e.  going from O(m) to D(m)) using 1ink

b and, (i1) the current routing of the flow in market m (which is optimal in P(u)

without the constraint that link b has to be used), Denote this marginal

difference by Ab,m'

The calculation of & is accomplished by decomposing the cost of using

b,m
Tink b for market m into three components:



13

(i) The unit cost from 0(m) to I(b)
(1) The unit cost along link b

(i111) The unit cost from J(b) to D(m)

The marginal difference &b,m is the sum of these three cost components minus
the unit cost on the shortest path between O(m) and D(m) in the current
solution. All three cost components above (as well as the cost of the current
minimum path) are directly available in the turrent solution of P(u). These
various cost components are shown in Fig. 4.

After the marginal differences have been calculated, all markets are
sorted in ascending aorder of {Ab,m}’ and the market index, m, is relabeled
accordingly. (Thus Ab,] is the lowest marginal difference; Ab,z is the
second Towest, and so on.)

The procedure for calculating u;(t) can now be summarized as %o11ows:
Algorithm G1:

Inputs: A solution to P(u)

A target value, t

A designated link, b
Output: +(t)

Step 0: Preliminaries
(a) Set ;B «Z*(u), set w, « 0, and set m « 1,
(b) If t < z*(u)
then go to Step 3.

(¢) Calculate Ay m'¥ meM and rank all 0D pairs accordingly.

(d) Set mgax « max{m: A

b,m * =}



Step 1: Stopping Criterion

(a) If z, + om0 2 t )

then set w,_ ~ w_ + b, and go to Step 3.

b b A

(b) Ifm-= mgax

then set Wy = Ups and go to Step 3.

Step 2: Update

(a) Set Wy« Wt set Z, * Z, + Ab,m © Q.

(b) Setm<+«m+ 1, and go to Step 1.

Step 3: Termination

Set u+

p(t) < w

b

Algorithm G1 uses the intermediate variables Wy and ;b’ respectively, to
carry the intermediate values of u; and Eg(u;) throughout. The algorithm
works by increasing the flow on link b iteratively, while keeping the cost
penalty for doing so at a minimum. It is essentially a "greedy" procedure
assigning 0D flow to paths that use arc b by the least cost ranking implied by
{Ab,m}‘

Algorithm 61 can be followed by studying Figure 5. In Step 0, if the
target value is less than the optimal objective function value of Program
E(Q), then the algorithm is superfluous and stops immediately; otherwise the
search for ug starts from zero. In Step 2, the value of uE is incremented to

the next "corner point" in Figure 5, and the next OD flow is considered.

This process is continued until one of the stopping criteria in Step 1 is met.
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The critericn in Step la ccmes into olay when t is in domain (11), whereas

the critarion for Step 1b is invoked when t > a?ax . For Step la,

the most recently assigned 0D flaw is split between its new path (using link b)
and its old path (in the optimal sclution of P(u)). This split is based on a

=]

simple 1inear interpolation of the cost function which is valid since z*(w

5wy

is evaluated only between adjacent "corner points" and this function is
lTinear in this range. Aéain, Figure 5 helps illustrate this point. At the
end, algorithm G] terminates with the value of u;(t) given in eg. (12) for
any value of t. This result is stated more formally in Appendix A which
interprets the steps of algorithm G] in the framework of a Lagrangian relaxa-
tion procedure.

Note that the ranking of Ab,m’ the marginal differences, in Step Oc can
be carried out using any complete sorting method. Significant computational
savings can be attained, however, with a modified bin sort (see, for example,
Aho et al (1983)). The idea here is to sort only groups of OD pairs with no
in-group sorting. Steps 1 and 2 are then modified for groups of 0D pairs.
The only group that has to be sorted internally is the one containing the 0D
market which brings the objective function value equal to the target value.

The most important feature of this procedure is that it relies exclusively
on information available directly from the solution of 5(u). This is another
way of saying that oﬁce program P(u) has been solved, the solution to the
capacity improvement program Gﬁ(t), can be easily determined for any link bee
and any target value t. This fact is used to develop the lower bound
procedure presented in Section 3. First, however, it must be shown that the
improved capacity parameter which results from algorithm G1 is, in fact,

a valid lower bound to z*. This is done next.
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o Lower 3ound Using Improved Capacity Parameters

The importance of the procedure outliined in Algorithm G, is that the

1
result can be used to obtain a lower bound to the optimal objective function
of integer program P. This is shown in the following two results:

Lemma 1

If t >z*, then u;(t) > v

This Temma states that if t, a target value, is strictly greater than z*, the
(unknown) optimal objective function value in the integer program, then u;(t),
the new capacity parameter resulting from the application algorithm G1, -
strictly greater than v}, the flow on 1ink b in the optimal solution of P.
Proof

First, note that for t < z*(u), the lemma is vacuously true and that for

t > Egax

, the Temma is obviously true since then u; = Up. Thus attention can
be restricted to t in domain (11), in which case u;(t) = Wg(t) as defined in
eq. (12). Next observe that program Fb(wb) is formed by adding the single
constraint Vp 2 Wy to program P(u) and that the feasible region of program
Gb(t) requires Eg(ﬁg(t)) 3 t.

By hypothesis E;(Wg(t)) 2 t > z*, Consequently, the optimal solution of
P is not contained in the feasible region of Fb(wg(t)). But program P(u) must
contain the optimal solution to P (since it is its LP relaxation). Thus it
must be that the optimal solution to P is on the "other side" of constraint
vy 2 Wg(t) (which was added to P(u)) meaning that u;(t) = ﬁ;(t) > VB. This
completes the proof.

Now let gf(t) = (vany u;(t), ...). That is, for a given t, algorithm G1
is used separately for each be@ to determine the element u;(t) in the link

vector g;(t). The result of Lemma 1 Teads to the following crucial observation:



Lemma 2

minimum {t, ?*(g () £ 2* for any real t

This lemma states that the above minimum is a lower bound to the original IP.

Proof

4
!

If t > z*, then by Lemma 1, ub(t) > v; ¥ bse. This implies that the
optimal solution of P is contained in ﬁTgﬁ(t)). Consequently, the optimal
objective function value of E(Ef(t)) is a lower bound to P. In other words,
Z*(u' (1)) < z*.

If, on the other hand, t < z*, then t is obviously a lower bound to z*.
This completes the proof.

Let

L(t) = minimum (t, Z*(u'(t))} (13)

1]

A typical shape of L(t) is a function of t depicted in Figure 6. The function
E*(gf(t)) is nonincreasing in t. To see this note that as t increases, ug(t)
also increases for each beﬁ'as shown in Figure 3. Larger values of ug(t)
result in a larger feasible region for Plgf(t)) and a (possibly) Tower optimal
value for the objective function.

Observe that the parameters {ub(t)} obtained from algorithm GI are not
intended to capacitate the problem. Indeed, if t < z*, than the value of ub(t)
is not even guaranteed to be greater than or equal to vE- The purpose of
these "improved capacity parameters" is to obtain a tighter lower bound to z*.

This procedure is described in the next section.



3. LOWER AND UPPER BQUND PROCEDURES

This section presents two orocedures. First, it shows how the concents
developed in Section 2 can be applied to obtain a lower bound to z*, the ontimal
objective function value of P. Second, this section describes a heuristic
procedure for obtaining an upper bound to z* based on repetitive solutions of

the relaxed problem, P.

e Lower Bound

Let L(t) denote a lower bound to z* given a target value t, as defined in
eq. (13). The procedure for determining L(t) is based on the capacity
improvement procedure developed in Section 2. That procedure, in turn, is based
on the solution to P(u) and thus the first step is to obtain this solution.
Algorithm é] is then applied separately for each link b in the network (i.e. ¥ bsg)
to obtain a set of improved capacity narameters. The vector of improved capacity
parameters !T 2 (yuus u;,...) is then used to solve the LP relaxation over again
(as the new program P(gf)). This increases z* which is a lower bound to z*.

_In addition, the increased value of z* means that a new set of improved link
capacity parameters can be obtained by again using algorithm GT for each link
beA. At the end of each iteration, Uy ¥ beA is set equal to the minimum of
u; and the value of Uy in the preceeding iteration. This gquarantees that the
capacity parameters "move-in" with each iteration. The iterative process of
solving P and calling algorithm G] for each beA is continued until either
(i) z* equals t, or (ii) the value of z* levels off so that further iterations
are unproductive.

The procedure for calculating L(t), referred to as the capacity improvement

algorithm, can be summarized as follows:
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Algorithm 62:

Inputs: Target value t
Improvement criterion u

Qutputs: Lower bound L(t)

Step 0: Preliminaries
Set Lo(t) + 0, and set k « 1
Step 1: Lower Bound

(a) Use shortest path algorithm to solve P(u) and obtain z*(u)
(b) set LX(t) « min (t, T*(u)}

Step 2: Stopping Rule

(a) 1f LK(t) 3 ¢
then go to step 4

LX) - 5N
Lk'](t)
then go to step 4
Step 3: Update

<

(b) If

(a) Set k « k+1

(b) Use capacity parameter algorithm G, to determine u; for all beg
(¢) Set uy min {ub,ug} for all bsﬁ

(d) Go to step 1

Step 4: Termination

set L(t) « LX(t)

The determination of the input parameters is relevant with respect to the
implicit enumeration procedure and so discussion of these values is deferred
to Section 4. Each iteration of the procedure includes a solution of P (in
step 1) and an application of algorithm Gy for each link in the network (in
step 3). The superscript k in the description of algorithm G, is the
iteration counter, and Lk(t) is the lower bound at the k-th iteration. The

determination of Lk(t) in step 1b follows directly from eq. (13) and Lemma 2
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guarantees that this is a valid lower bound; i.e., L (t) < z* for each k. The

procedure must eventually satisfy one of the two stopping criteria given in
Step 2 since for a fixed target value t,

Lk(t) > Lk‘}(t) for each k (14)
In other words, Lk(t) is nondecreasing in k. [To show that inequality (14) is
true, observe that the minimization in step 3¢ causes each element in u to be
nonincreasing in k. This implies that z*(u) is nondecreasing in k and (14)
follows from that.] Upon termination of the algorithm, L(t) is set egual to
the current value of Lk(t).

The performance of this capacity improvement procedure is strongly
influenced by choice of the target value t. Figures 7a and 7b illustrate the
typical behavior of algorithm 62 for a small and a large value of t, respec-
tively. The figures depict Lk(t) versus the iteration counter k. In both
cases the initial value, L1(t), equals the optimal objective function value
of the original LP relaxation, P. Figure 7a illustrates the consequences of
using a small value of t--Lk(t) reaches the target value, t, within a few
interations. In this case, stopping rule (a) in step 2 is met, and the lower
bound is L(t) = t. Figure 7b illustrates the consequences of using a high
value of t-—Lk(t) tends toward a 1imit which is strictly lower than the target
value. In this case, stopping rule (b) is met, and the Tower bound is L(t) < t.

The two cases described above indicate that there is a critical target
value, E, above which algorithm G2 will generate a lower bound which is Tower
(looser) than t. i.e.,

t = maximum {t : L(t) = t} (15)
(For the purposes of definition (15), it is assumed that the improvement
criterion is y = 0.) The determination of the critical value E is explored

further in Section 5, which discusses some computational results.
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If a target value which is greater than Z s desired, the network
must be partitioned and the lower bound procedure aoplied to each partition.
This is the idea behind the implicit enumeration procedure presented in
Section 4. The implicit enumeration procedure also requires the determination
of an incumbent soluticn for P, the objective function value of which is an

upper bound to z*, This is described next.

e Upper Bound

The rationale for the heuristic procedure presented here is that since
program P is easy to solve, it can be used repeatedly in determining a feasible
solution to P; the objective function value of this heuristic will naturally
be an upper bound to z*. Let H denote this upper bound.

At each iteration of the heuristic procedure, program P is solved and the
Tinks with large flows are selected to be a part of the network design.

For the next iteration, the fixed cost on these links is assumed to be a sunk

investment, and only the variable cost is used in solving P again. This

- iterative process of solving P and selecting additional 1inks for inclusion in
the network design is repeated until a feasible solution is reached. At this

point, the Tinks included in the network form a path between each 0D pair me@.
A1l links with zero flow can now be discarded, and the procedure terminates.

The performance of this heuristic procedure can be enhanced by system-
atically altering the value of the link capacity parameters {ua}. Prior to
solving P, the current value of Uy (for each 1ink not yet selected) is set to
a convex combination of its previous value and V:,'the flow on  link a in the
previous solution to P. This will tend to accelerate the algorithm driving
links with low flow in one iteration to even lower flow in the next one (and
eventually to zero flow).

To describe the afgorithm formally, let ? denote a (temporary) constraint

set with elements of the form {ya =1}, and let 5? denote the set of links in



A for which ¥y ® 1. At each iteration of the heuristic orocedure A, denotes

the set of links currently included in the network desi-n. Let u = (..., Uy s

canote a (temporary) link capacity vector, and let r = (..., r .) be a

)
link threshold vector. The algorithm chooses to includz link a if its flow is
crr2ater than T at a given iteration.

Let F;(g) denote the linear program P augmented with constraint set g and
using capazity parameter vector ;. Including ? in the nroblem does not

actually enlarge the number of constraints in P. Rather, it alters the form

nf the objective function. Let Fg denote the sunk irvestment cost associated

~

‘."‘ith Y’ i.e.

ans define %a ¥ a as

0 s ae:ﬁ"
fa = i
fa ¥ &tﬂ

-~

The LP can now be written as follows:

Program P'Y(g): "

. f
min 20(u) = Fo + £ T q (¢, + =) X (16)
xeX 4 5 ma o a Uy el

"'ote that for any f and Q this is still a shortest path problem (With flow
assianment).

The heuristic upper bound procedure, referred to ac algorithm G3, can now
be summarized as follows:
Maorithm G3

Input: Reduction rule for vector r

Qutput: Upper bound H

Heuristic network design
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Step 0: Pfe11nimaries
Set f « 9, set AG < D, and set Q_+ u
Step 1: Solve LP i
(a) Compute Fgand %a for all a
(b} Use short;st path algorithm to solve 53(&) to obtain link

A~

flow vector §_= (oo Vas s aw ) and obj;ctive function value 2.
Step 2: Stopping Rule

If v, =0 ¥ a¢hS

then go to step E
Step 3: Update

~

(a) For each aéﬁ“ if Va > Ty
then add {ya~= 1 to E and add link a to A
(b) For each a¢hj )
reduce ra ana reset Ga to a convex combination of Ga and ;a
(c) Go to Step 1
Step 4: Termination
(a) If ;a = 0 for some acAj, then set 2 “z- Fy
(b) Set H « ;, and STOP. }he current set of links in 5? is the
heuristic network desian. )
The next section describes the implicit enumeration nrocedure which

incorporates the aforementioned upper and lower bound alrorithms.



4, IMPLICIT ENUMERATION PROCEDURE

This section looks at determining an e-optimal solution to the integer
program P. It outlines a preccedure for obtaining a feasible solution to P
whose objective function value is always within 100.¢ percent of z*. The
value of ¢ is assumed to be snecified a priori.

The implicit enumeration (IE) procedure presented in this section is based
on the usual branch and bound (B&B) framework (see, for example, Geoffrion and
Marsten (1972)). This framework can be represented by a binary B&B tree
structure. The root node of the tree represents the original LP relaxation,

P, and the other B&B points represent a partition of P in which a subset of the
{ya} decision variables are set to either 0 or 1. At each point in the tree a
candidate integer solution and a lower bound are obtained.

The principle distinction between the standard IE nrocedure and the one in
this paper is that here the lower bound at each point in the B&B tree is not
obtained directly from the LP relaxation of the problem. Instead, the lower
bound is based on the capacity improvement procedure described in Section 2,
This results in tighter lower bounds and a reduction in the
computation effort required for the IE procedure.

The notation used to describe the I[E is an extension of that used in the
upper bound procedure presented in Section 3. Let Y denote a constraint set
with elements of the form {ya = 0} or by, = 1} and let Ay denote the set of
links in A whose decision variable is-fixed in set Y (1.;., if acAy then
either e 0 or ¥y * 1). Let FY denote the sunk investment cost ;ssociated

with the links whose decision variable is set to 1 in Y. That is,
Fy

£y
! Z e (17)

aEAY



Also, the modified fixed charges are defined as
K(l-ya) ¥ ageY

fa y aggY (18)

where K is a large positive constant. The effect of eq.(18) is that links whose
decision variable have been set to 1 in Y incur zero fixed charge while links
whose decision variable have been set to 0 incur a large (effectively infinite)
fixed charge. The fixed charge remains unchanged for links whose decision
variable is not set in Y.

Using this notation, any point in the B&B tree is characterized by a
specific set Y. Let Py (u) denote the LP relaxation evaluated at Y. This
program can be summarized as follows:

Program Py (u):

T f
min zY(g) = Fy+I I g
xeX -

a,m

Observe that for any Y, F}(g) remains a shortest path oroblem with flow

assignment.

The basic step in the IE procedure consists of determines a lower bound
LY(t) and an upper bound Hy for any given Y in the B&B tree. LY(t) is obtained
b§ applying the capacity iﬁprovement procedure (algorithm Gz) ta program P;(g)
(rather than to program P(u)). Similarly, HY is obtained by using p;(g) in the

-~

heuristic procedure (algorithm G3) which can be solved for the given Y in the

-~

B& tree. Let H denote the best (minimum) value of HY for all B&B points Y

that have been evaluated up to and including the current Y.
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The heuristic network design associated with this upper bound is retained as
the incumbent solution to P.] To ensure that the final upper bound value is
within 100.¢ of z*, the target value, t, is updated at every point of the B84&3

tree to be

t = TE? (19)

This target value is used to obtain the abovementioned lower bound, LY(t).
If LY(t)<t, the current solution cannot be ascertained to be 100-¢ percentiof z*,
The ;urrent problem must then be partitioned by adding another constraint to Y.
This generates a new point in the B&B tree which is then evaluated by the procedure
described above. On the other hand, if LY(t)ip, then the current problem is
fathomed. That is, any further partition; at this point in the tree will result
in lower bounds at least as high as t. Therefore, the IE procedure backtracks
over the B&B tree to determine the next point Y to be evaluated. The IE
orocedure continues until all B&B points have been fathomed.

The following paragraphs describe the partitioning and backtracking

procedures in more detail.

® Partitioning

The purpose of the partitioning procedure is to select a link d (dag-gY)
which is used to partition the current problem into two parts -- one with )
P 0 and the other with ¥ = 1. The criterion for choosing the partitioning
link d is that the lower bound obtained for I+{yd=0} and Y+{yd=1} should be
as large as possible. [Remember that lower bounds are obtained from the
capacity improvement procedure rather than the direct application of an LP.
Thus, methods for selecting a partitioning variable based on the LP solution --
such as "up and down penalty" methods (see for example, Driebeek (1966), Tomlin

(1971) )-- do not necessarily identify the best partition.]



The partitioning orocadure used hers is based on the link flows ‘y_*: in the
a

current ootimal solution to 5Y(g). [f Vé* is much larger than zero, then
partitioning on link a will c;use a large increase in the lower bound for

I B {ya=0}. Similarly, if ?5* is much smaller than Uy » then partitioning on

link b will cause a large increase in the lower bound for Y + {yb=1}. Therefore,
in order to increase the lower bound for both partitions, the partitioning link,

d, should have a flow Va* that is, in some sense, "in the middle" between 0 and Ug-

To state the partition selection procedure, define a link partitioning

measure, Ea(e), as follows:

E,(8) = gv,* + (T-e)(ua-va*) \Iaea-ﬂ\y

The parameter 8 is a predetermined weighting constant in the range O<6<l. The
set {Ea(e)} is defined over the currently active links (i.e., those not set in
Y). For e =1, {Ea(e)} represents the set of link flows whereas, for 8=0,
{E,(8)} represents the set of "unused link capacities."  The partitioning

rule is to select a link, d, such that

E4(8) = max (E,(8)}
355'6 Y

Ties are broken arbitrarily. The choice of g was determined empirically. A

value of 8 = 0.90 seems to perform well.

o Backtracking

The purpose of the backtracking procedure is to determine the next point

in the B&B tree to evaluate once the current point has been fathomed. The



method used here is to update the csnstraint set Y using a "depth first" search.
In the computer, the set X is represented as a stack (i.e., a LIFQO data
structure). Constraints are added to f when partitioning occurs. By convention,
when the current problem is partitioned, the constraint {ya=0} is added to stack
Y and the constraint Tya=1} is added to a temporary stack T. When the current
nroblem is fathomed, the B&B tree is backtracked by deleting constraints from Y
(in LIFO order) until either (i) a constraint of the form {ya=0} is encountered

and deleted or (ii) f=ﬂ. As long as I is non-empty, there are points in the B&B

tree yet to be evaluated. In this case, a single constraint is transferred from
T to Y. This updated set, I, represents the next noint in the B&B tree to be
evaluated. On the other hand, if T is empty, then all B&B points have been
fathomed and the I[E procedure terminates.

In addition to updating Y, the appropriate link capacity vector u must be
determined. In general, if a set of link capacity parameters {uy} is determined
at a point in the B&B tree, these parameters are also valid at any decendent
‘point in the tree. Thus, no special handling of the vector u is required in the
partitioning process. During backtracking, however, the appropriate link
capacity vector will not be available unless it has been previously stored.
Accordingly, along with the temporary constraint stack T, a temporary vector
stack U is used. When a constraint is added to f, the current link capacity
vector, u, is added to U; when a constrained is deleted from T, a vector is
deleted from U. This deleted vector becomes the current value for u. [If
computer storage is limited, a subset of U can be stored and the appropriate

link capacity vector can be determined by a look-up table. This reduces

storage requirements at the expense of computational effort. ]



. Algorithm

The implicit enumeration procedure, referred to as algoritnm G,, can be

43
summarized as follows.

Algorithm G4

Inputs: Optimality criterion, ¢
Lower bound improvement criterion, y

Partition weighting constant, 3

Outputs: (i) Heuristic network design whose objective function value, H,
is within 100-e percent of optimality, or

(ii) Determination that there is no feasible network design.

Step 0:‘ Preliminaries
(a) Set u to vector of maximum possible link flows
(b) Set Y «@, set T«§, and set U<p
(c) Set He = |

Step 1: Evaluate Bounds
(a) Use heuristic algorithm G, to determine H,
(b) If Hy<H )
then set HeHy s save heuristic solution as incumbent network
design; set £+H/(1+e)

(c) Use capacity improvement algorithm GZ to determine LY(t)

Step 2: Stopping Rule
(a) If H=o
then STOP. Program P is infessible.
(b) If Ly(t)>t and T = @
then-STOP. H is within € of optimality.
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then go to Step 3.
(d) Else go to Step 4.
Step 3: Partition

(a) Set Ay-la: aeh-A,, O<V; <u ]
(b) Compute Sa+63g* + (1-8) (ua—Vg ) ¥acA

(c) Set $"Xemax (S}
aehy

(d) Set defa:5,=s"%}  Break ties arbritrarily.

[}

(e) Add {yd 0} to Y
Add {yd = 1} to T
Add u to U
(f) Go to Step 1.
Step 4: Backtrack
(a) Delete constraints from ! (in LIFO order) until either a
constraint of the form ya=1 is encountered or I=Q.
(b) Delete a single constraint from T (in LIFO order) and add
it to Y.
(c) Delete a single vector g_from u (in LIFO order) and set u+£.

(d) Go to Step 1.



31

There are three input parameters to the algorithm. First, the optimality
criterion, ¢, must be determined & nriori. Consequently, in cases where there
is no natural tolerance (due, for example, to data accuracy), the IE procedure
may have to be solved several times starting with a large value of <. This value
is then decreased until the computational effort needed to obtain a solution
outweighs the incremental value of such a solution. Second, the improvement
criterion, y, provides trade-off between the work done at a single point in the
B&B tree and the number of points that must be evaluated. The smaller the value
of y, the greater the number of iterations of the capacity improvement algorithm
and the higher the lower bound for each subproblem. As mentioned in Section 3,
howéver, the computational effort here exhibits decreasing marginal returns and
branching is eventually appropriate. Empirical results indicate that v should
be in the range of 0.003 to 0.001, The third input is the weighting constant,
8, described earlier in this section. As mentioned there, a value of 8 = 0.90
. seems to perform well. |

Step 1 of the algorithm determines lower and upper bounds for the current
subproblem to P. The first subproblem, at the route node of the B&B tree, is the
LP relexation of P. Here, the threshold vector, r, in algorithm Gy 1s reduced
gradually in order to obtain a good initial heuristic solution. Once the B&B
root node has been evaluated, however, numerical experimentation showed
that the best choice of the threshold vector for all subsequent subproblems is
r=0. This amounts to a simple "rounding-up" of all fractional ¥, decision
variables in program 39(g). In fact, since 3}(2) must be solved repeatedly in
the link capacity 1mpr;vement procedure, this~”rounding-up" step can be

performed within algorithm G2 with no additional computational effort.



The [E procedure continues until one of the two stnoning rules in step 2
is met. Step 2a terminates the problem if there is no feasible solution and
step 2b terminates the procedure at the c-optimal solution. Step 2c is used
to invoke partitioning in cases where no fathoming occured at the current B&B
noint and step 2d initiates backtracking in case the current B&B point
is fathomed. Partitioning and backtracking are performed in steps 3 and 4,
respectively.

The next section evaluates *the computational performance of this

implicit enumeration framework.



5.  COMPUTATIONAL EXPERIENCE

This section describes the computational performance of the capacity
improvement (CI) and implicit enumeration (IE) procedures presented in this
paper. For each procedure, optimization tests were carried out on networks of

various sizes and with several different levels of 0D shipment flows.

The network and OD flow generation procedures are summarized in Appendix B.
Each network included a set of city (end-of-1ine) terminals, ﬂE’ and a set of
transshipment (breakbulk) terminals, NB‘ Terminals in NE were used purely as
origin/destination points; terminals in NB were used purely at transshipment
points. All networks were complete with a fixed charge and a variable cost
component on each (directed) arc. The fixed charge for a link was set equal
to the cost of carrying one truckload of freight over that link. -In addition,
snecial arcs with only variable costs were used to rzpresent handling costs
at the transshipment terminals. The size of the networks ranged from
Mg =10, [N3[=2 (involving 90 0D pairs(markets)and 132 fixed charge links) to
N [=40, N5 |=6 (involving 1560 0D pair§ and 2070 fixed charge links). To
* capture the effect of flow level, in addition to network size, the largest of
the networks was tested using several Q0D flow levels. These runs resulted in
an average non-zero link flow in the heuristic network design ranging from
1/3 of a truckload to & truckloads (compared to a fixed charge equivalent of
1 truckload).

Two topics are dealt with separately in this section. First, the lower
bounds produced by the CI procedure are compared to these generated by the LP
relaxation of program P. Second, the computational effort versus accuracy of

the IE procedure is evaluated. As a means of comparison, the computational



performance of a standard implicit enumeration {i.e., without incornorating

the CI nrocedure) and a dual ascent method are also explored.

¢ C(Canacity Improvement Procedure

The following paragraphs describe the ability of the capacity improvement
procedure to improve the lower bound to z*, the optimal objective function
value to program P. For each network under consideration, an upper bound H
(using heuristic algorithm G;) and a lower bound L(t) (using CI algorithm Gz)

were determined. The near-optimality of these bounds is measured by

olt] = ﬂ,_-‘(%l (20)

To measure the effect of the CI proéedure, two different target values, t, were
used. In the first case, t was set to t = 3" where 3 is the optimal objective
function value of program P. This causes L( 3*) = 2* and so ( 2¥) is simply
the near-optimality measure of the original LP relaxation. In the second case,

t was set to t, the critical target value defined in eq. (15). Thus, in this
case, L(E) is the highest lower bound and e(E) is the tightest near-optimality

measure attainable with the CI procedure.

Table 1 displays the near-optimality measure, e(t), of the LP relaxation
(i.e. for t= 2 in eq.(20)) and the CI procedure (i.e. for t=t in eq. (20)) for
four trial networks of various sizes. As shown in the table, in all cases, the
CI procedure improved the lower bounds. The optimality measure is reduced by
anywhere from 60% for the smallest network to 15% for the largest one.

Note that increasing the number of OD markets increases the overall flow
in the network. In each of the four networks reported in Table 1, the size of

the 1ink fixed charge was equivalent to the cost of carrying one truckload.



(@8]
o

The average non-zerg link flow in the heuristic solution, however, varied

from 2 truckloads in the smallest networks to aver 4 truckloads in the largest
networks. For the cases in which the flow level is relatively high, the LP

link costs closely approximate the fixed-plus-linear link costs of the IP and
thus the simple LP Tow bound is not far from z*. Moreover, the improved
capacity parameters uy+ must always be greater than or equal to the link

flows in the LP relaxation (see algorithm Gy). Thus, in the high flow level
case, the CI procedure has a limited ability to reduce the link capacity
parameters. This inability combined with the closeness 0° the LP lower bound

to z* means that the CI procedure will not improve the lower bound substan-
tially. On the other hand, for the cases where the volume of flow is

relatively low, the lower bounds generated by the CI procedure are significantly
better than those obtained from the LP relaxation. This explains why the effect

of the CI procedure diminishes as the size of the network increases in Table 1.

To test the effects of flow level directly, the largest network
(!NEl=4O, 1N81=6) was optimized with three different levels of flow: low,
medium and high. [The four networks exhibited in Table 1 fall into the medium
flow category.] The volume of flow in the network can he characterized by the
link flow in the solution of the LP relaxation. For the low, medium and high
flow cases, the average non-zero link flow in the heuristic solution was 18 B
and 8.truck103ds, respectively. The fixed charge in all cases was equivalent to %he
cost of carrying 1 truckload. The results of this test are shown in Table 2. (Note
that the figures for the medium case in Table 2 are not identical to the largest
network in Table 1 since the networks in each case were generated separately.)
As this table shows, the CI procedure yields substantial improvements in

the low volume but only marginal benefits in the medium and high volume cases.
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The conclusion, then from Tables 1 and 2 is that the relative flow level is
more important than the network size in estimating the ability of the CI

procedure to impraove upon the lower bound generated by the LP relaxation.

Any evaluation of the tightness of bounds must be compared with the
computational cost required to obtain these bounds. One measure of the
computational effort of the CI procedure is the number of iterations of
algorithm G2 required to obtain a given bound. This relationship is brought out
in Figure 8, which describes the low volume network shown in Table 2. For an
optimality measure, ¢, greater than or equal to ¢ ( E*) (i.e., for t < z*), the
initial LP relaxaticn provides a sufficiently tight lower bound and so the
algorithm stops in the first iteration. For all values of ¢ between e{%) and
e( 2%) (i.e. E*<t<£), the lower bound L(t) reaches its target value, t. But,
as shown in the figure, as € approaches ¢(t) the convergence of the algorithm
shows a diminishing rate of return. Thus for values of ¢ near (or below) c(t),
it is more efficient to incorporate the CI procedure within an implicit

enumeration framework, as in algorithm G4.

The computational aspects of the IE procedure are discussed next.

o Comparison of Performance Curves

To assess the accuracy/computational effort tradeoffs associated with the
implicit enumeration (IE) algorithm, Gy, this procedure was carried out at
various levels of € for each of the trial networks discussed above. The
resulting curves are shown in Figures 9 and 10, These figures display the
near-optimality measure €(t) versus the computational effort (in CPU seconds

on a Digital Equipment Corporation VAX 782 minicomputer).
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Figures 9a through 9d correspond tc the four trial networks shown in
Table 1. The solid Tine in each figure shows the nerformance curve for the IE
procedure described in this paper. The computatianal cost associated with the
original LP relaxation (at =(z*)) and the critical target value (at =(t)) for the
CI procedure are shown on this line., As expected from the previous discussion,
only small improvements are achievable in the largest networks whereas substantial
gains are obtained in the smaller networks. In fact, for the smallest network
(Figure 9a),optimality was achieved. The majority of the improvement in the
ontimality measure was obtained at the root node in the B&R tree (i.e. e in
the range s(%)s e < £(2%)). Thereafter, while additional improvements in ¢ were

obtained, these improvements were usually achieved at a high computational cost.

The IE procedure presented in this paper can be compared to a standard
implicit enumeration (SIE) procedure where the Tower bound at each point in the
B& tree is simply the LP relaxation of the corresponding subproblem. The
performance curves for the SIE are shown és dashed lines in the figures. These
curves point out the benefit obtained by incorporating the CI procedure within
the IE. In all cases, the IE dominates the SIE. Moreover, for the larger
networks, while only small gains were achieved by the IE, this compares to

essentially no improvement over the original LP relaxation for the SIE.

The computational quality of the IE procedure may also be guaged by comparinc
it to the performance of the dual ascent (DA) method proposed by Magnanti
and Wong (1984b). The DA procedure (which is summarized in Appendix C) solves
the dual to the disaggregate LP relaxation composed of objective function (3a)
with constraints (2), (4), and (5). The performance curves 0f the DA procedure

are shown as dotted lines in Figures 9a-9d. For the small networks, the IE
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orocedure alone (at the point z(%)) achieves a tighter lower than the DA
procedure, and with significantly less computational effort. For the larger
networks, the IE procedure was better for larger tolerances whereas the DA
procedure was superior for tighter tolerances. This was due, in large part,
to the fact that the larger networks had a greater level of flow and so the
Cl procedure was less able to improve the solution.

To measure the effect of flow level , the performance of the procedures
was evaluating using the lTargest network with three different flow levels
(see Table 2). The performance curves are shown in Figures 10a through 10c.
[The designation of the [E, SIE, and DA curves is the same as that used in
Figures 2.] As expected, the IE always outperforms the SIE, but this improvement
diminishes as the flow level increases. The IE procedure is better than the
DA for the low flow volume case, and for higher values of €, in the medium
volume case. In the high volume case, z* is already close to z* (within 4,3%)

and so the bounds obtained by the IE and the DA are also close. |

In reviewing Figures 9 and 10, it seems that, where optimality is not
attained, the IE procedure cannot overcome certain values of €. That is, for
small tolerances, the exponential growth of the B&B tree predominates and so
the IE curves track those of the SIE. This overall pattern reflects the
difficult nature of the problem. The authors of the DA algorithm have suggested
that their procedure could also be imbedded within a branch and bound framewor!:.
However, on the basis of the curves in these figures, it does not seem likely
that significant improvements can be obtained.

Magnanti and Wong (1984b) have found that their dual ascent procedure

compares favorably with other methods for uncapacitated fixed charge network

design problems. Thus, it appears that the CI and IE procedures presented in
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this paper have strong merits, particularly for situations with relatively low
levels of flow, as in LTL freight networks. Markets with LTL networks are
characterized by flows which are at the low range of our experiments. The

reason is that high 1ink flows would typically indicate an opportunity for
bypassing a transshipment point and part of that flow would be diverted to
another 1ink. Thus the design problem has to do with the portions of the network
with low flow. In these cases, the fixed charges correspond to a minimum
frequency of, say,one truckload per day and arc flow are in the range of

1/3 to 2 truckloads per day. It is in this interesting range that the CI and

IE algorithms perform particularly well.
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APPENDIX A

Section 2 describes the single link capacity improvement program, ﬁb{t),
which, together with its subprogram ﬁb(wb)’ is used to determine the improved
-

capacity parameter U This appendix uses Lagrangian relaxation procedures

to characterize the solution to these two programs and to interpret the stepns
of algorithm G1 which is used to solve problem ﬁb(t).
Consider first program 5B(wb) given in eqs. (8). The Lagrangian
relaxation of this program (with respect to constraint (8b)) is as follows:
Program Rb(Ab,wb):

f f

- . a b

ZE(Ab’wb) = W {z qm[: Zb(ca+ U_)xa,m * (Cb+ EE B kb)xa,m] * ApHy } (A1)
X LM a# a

where Ab is the multiplier associated with constraint (8b). The Lagrangian

program is then

Program Sb(wb):

g { EE“‘b"“b)} (A2
ABaO

I~
~—

Since §B(wb) is the Lagrangian program of Fb(wb), both programs have tne same

optimal objective function value, Eg(wb).

The following paragraphs describe a method for solving §£(wb); i.e. to
detarmine ig = “g(wb). To characterize ¥, let AXy) denote a subgradient
(i.e., "slope") of objective function EE(Ab,wb). Since EE(Ab,wb) is a
piecewise-linear concave function in Ab, (see Figure A), the optimal value of

kb will satisfy the following conditions:

B(Ab) >0
a(kb) <0 ¥ A

>

o
A
>|

(A3a)
(A3b)

o

v

>
O Ox%
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Also, since Zg(kb,wb) is subdifferentiable (see, for example, Fisher (1981)),

S(Ab) is given by
W » B0, A2 - =y - Gg(kb,wb) (A4)

where Gg(kb,wb) is the flow on link b in the optimal solution to program
Rb(kb,wb).

The optimal flow GE(Ab,wb) in program ﬁB(Rb’Wb) can be described for any
value of A, . Let {ay rr}be the set of M| marginal costs defined in Section 2.

It is assumed that all markets are sorted in ascending order of {Ab m} and that

max

the market index, m, is relabeled accordingly. Let m denote the largest

index m such that By m remains finite (i.e., meX 2 max {m:Ab L ©}), In
t A ]

addjtion, let ¥y om denote the cumulative flow on 1ink b for the m-th 0D pair; i.e.,
m

v, = T q (A5)
b,m g=1 %

Also Tet vgax = v, . form= m2*,  [In program P, u, is initially set so that
Uy 2 vgax.] Now, observe that as kb increases, the cost of link b decreases
(see objective function (A1)) and so more flow will be attracted to this link.

Srecifically, for each m (m=1,..., mnaX)

s T kb is in the domain
Bp,m-1 5 Ap < B (Aga)
then the optimal flow on link b in program ﬁB(Ab,wb) is

vg(lb,wb) o W (R6D)

(For purposes of definition, let Ab 0 = 0 and Vb .0 = 0.)

The determination of Xg is now straightforward. If Vgax < Wy, then program

ﬁb(wb) is infeasible and the Lagrangian program S (w,) is unbounded (i.e., _E = ),
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Ctherwise, define m as follows:

p =Y
~4

- .. i 8 o
m m1mmummax { Vb,m > b}
m=1,...,m

Now, consider the subgradiant ?(lb) for Ap 2 by Usina eqs. (A4) and (A6),

e
the definition of m implies that

Qa2

(kb) s 0 for iy 2 &b,a' This definition
also implies that a(xb) 2 0 for A, < &y ~. (If this were not true then m

would not be the minimum in (A7).) Hence, Bt e satisfies conditions (A3)

aiving the desired result:

The identification of % in eq. (A7) can also be used to specify EE(Wb)’
the optimal objective function value of programs ﬁb(wb) and Sb(wb). Refer
again to Figure Al. For X, = 0, subprogram ﬁf(kb’wb) is identical to the
original LP relaxation P(u). Thus ig(O,wb) = z* as shown in the figure. For
kb in the domain 0 ¢ kb < Ab,a , Eg(kb,wb) is a piecewise-linear increasing
function in kb' Each linear segment in this domain has a width given by (A6a)
and a corresponding subgradient (i.e., "slope") given by (A6b). A typical
segment is illustrated in Figure Al. Combining this information, the optimal
value i;(wb) = E;(Ig,wb) can be expressed as z* plus the sum of the vertical
comnonents of the first & linear segments, i.e.,

~

m

Zg(wb) = 7% 4 m§1 (wb - Vb,m-l)(ab,m - Ab,m-l) (A2)

where m is defined in eq. (A7). Eq. (A9) can be simplified by rearranging

terms. This yields '

) m-1

* = 3% - A ~ f

zb(wb) Z¥ % I Ab,m G (wb Vb,m-1)ﬂb,m (A19)
m=1

Eq. (A10) can be used to determine the optimal solution to program Qb(t).

Note that eq. (A10) holds for any Wy, in domain (9). In particular, it holds
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for the minimum value of W that satisfies Eg{wb) > t for any t in domain (11).
Since Eg(wb) is an increasing function in Wy» the minimum value, QE = Qg(t) will
satisfy Eg(ﬁg) = t. Thus, the value of &g can be exoressed explicitly b

substituting t for the left-hand-side in eq. (A10) and solving for w

b
This gives : %_1
- * .
_ t (z + mi1ab’m qm>
WE(t) = vy pay — (A1)
b,m

The value of Gg in eq. (A11) is the same as that determined in algorithm
G], although it is expressed in a slightly different “orm. To bring out this
equivalence, observe that the final value of Wy in aloorithm G] is determined
in Step la. It is

t-zb
"h < ¥ *“j;“" (812)
‘ b,m '

Also, prior to executing (A12), the assignments Wy g and Eb - 2b+Ab,m'qm

are executed (m-1) times in Step 2a. Thus, prior to executing (A12), the

_values assigned to W, and Zb are

~

"5 * Vb,m-1

. m-1
+2*+ T A

*q
m=] Dem M

h
so that assignment (A12) is equivalent to eq. (All).
The above discussion did not explicitly specify m (since Wy was not known

a priori). It is straightforward to show, however, that in executing algorithm

81, the first m (i.e., the smallest m) that satisfies the stopping condition

~

zZy * Ab,m QGp 2t

in step la, also satisfies definition (A7). Thus, algorithm G, determines the

optimal solution to program Gb(t).



APPENDIX 3

This appendix outlines the network and 0D flow generation procedure used

in the computational experience section.
| For each network generated, the node set, ﬁ, is taken as a subset of a

set of 50 metropolitan areas distributed throughout the continental United
States. Set § is partitioned into two sets: HE and NB' Here, yE contains the
set of end-of-line terminals where shipments originate and/or terminate and
y contains the set of breakbulk terminals where transshipment occurs. The
nodes in EE are randomly selected from among the 50 cities. The nodes in N
are selected using a p-median heuristic (Teitz and Bart (1968)), where the
WB‘ breakbulk terminals are taken as the p medians. The medians are selected
from the set of 50 cities which are not contained in Ne. [Note that, in this
paper, the location of all terminals is considered fixed; it is the selection
of network arcs and the flow on these links that is designed.]

The networks that are generated are fully connected; i.e.,

A'= {a: I(a)sﬁ, J(a)sﬁ, I(a) # J(a)}
Each arc aeA is a design link with associated fixed charge fa and variable cost
Cye In addition, the breakbulk terminals are represented as arcs in order to
represent handling costs at these terminals. There are no fixed charges
associated with these links.

The set of OD markets, M, consists of all end-of-line city pairs (i.e.,
M| = ]§512-1§E|). For each meM, the shipment demand, q_, is generated using
a gravity-type model (Stopher and Meyburg (1971)). Specifically,

(r)% - (8,)%

(d )™

qm e T
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where B is the weekly retail sales at city 0(m), S is the weekly retail sales
at city D(m), dm is the hichway milage from O0(m) to D(m), and oo, a1, %2, and 2
are fixed parameters.

The numerical quantities used in the computational experiments are set to
reflect a realistic LTL shipping environment. For each link aeg, the fixed
charge, fa’ (in dollars) is taken as the cost of running a single truck per week
over that Tink at $1.10/mile. The variable cost, Cy (in dollars per 1b.) is
taken as the cost of running a single truck over link a assuming an effective
payload capacity of 300 CWT. The handling cost at each breakbulk terminal is $1
per CWT. For each meM, the values for P and Sp are taken as the gross retail
sales for the associated Basic Trading Area (BTA) adjusted to 1984 dollars.

The distances (dm) are in statute miles. For all networks generated, the value
of the parameters in eq. (B1) are fixed at o1=1.0, 2:=0.5, and a1=0.5. Note
that o #x, so that nonsymmetric shipping demands are modelled. Finally, the
low, medium, and heavy shipment volumes are generated by setting parameter o,

at 2.0, 100.0, and 1000.0, respectively.



APPENDIX C

This appendix reviews the dual ascent procedure for uncapacitated fixed
charge network design problems proposed by Magnanti and 4Wong (1984b),

Let Pd denote the disaggregate integer program formed by using objective
function (3a) with constraints (2), (3c), and (4). Let Pﬁ denote the LP
relaxation of Pd in which constraints (3c) are replaced with (5) and let Eﬁ
denote the dual of Fﬁ. Let {“n,n} and {Ua,n} denote the dual variants associated
with constraints (2) and (4), respectively. The dual oroaram is as follows:

Program ﬁa:

max Zd = g “D(m),m (Cla)
subject to
- (
Ka(a),m = P1(a),m ¥ %a,m S Cafp ¥ .M (C1B)
z Tam < fa ¥a fCTe
m
Ta,m > 0 ¥a | (c1d)

The dual ascent procedure is summarized in the following two algorithms:
Algorithm C:

Input: A node j
A market m

Qutput: Updated dual variables, Him and Ta.m ¥-as§j

Step 0: Preliminaries

(a) Select a link aegj

(b) Set i « I(a), set j « J(a), and set g i * 03

.M



Ld #

Step 1: Determine Slack

then set § - C - . 1 .
a,m aqm J.m =1,m a,m

(b) Else if o O ¥ fa

then set 5a,m < fa - Em ca,m

(c) Else set j « i and use algorithm C recursively.

Continue recursion until either positive stack is obtained,
(i.e., 8

~

> 0) or root node O(m) is encountered (i.e., §

a,m a,m

Step 2: Update Dual Variables
(a) Repeat steps 0 and 1 for each arc asBj

G2 . min
(b) Set minimum slack Sj,m aij {éa’ng

(c) If minimum slack is from step la

h . . + §.
then set Bim « ”J,m Gg,m

(d) Else if minimum slack is from step 1b
then set i m « Wim * Sj,m

and set o « g + Gj

R
a,m a,m o for all ae;j

Dual Ascent Algorithm:
Output: Objective function value, Ed
Step 0: Preliminaries
(a) Set M = 0 ¥n,m
(b) Set T = 0 ¥ a,m
Step 1: Update Dual Variables at Destination

For each meM set j « D(m)

and use algorithm C to obtain updated110(m) .



&

Step 2: Stopping Rule
(a) If at least one Ho(mY.m is increased
then go to Step 1

(b) Else set By~ ; Mo (m) m and STOP.

The dual ascent algorithm seeks to increase the value of dual variables

{”D(m) m }iteratively for each market meM while maintaining feasibility of

program 0. Each iteration consists of increasing all Hp(m) ,m by SD(m),m‘

The algorithm continues until SD( =0 ¥m. By construction, the dual

m),m
variable values computed by the algorithm are feasible in ﬁa. Thus, the
objective function value, Ed, using these variables is a valid Tower bound

to z*, the optimal objective function value of the inteaer programs Pd and P.
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Source of\\\\\\_ ]NBJ = 2 lNBl =6 [N8| =2 INB{ =6
Lower Bound ‘\\\\\ - = * ~
LP relaxation 0.113 0:213 0.092 0.744
Canacity improvement
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Table 1

Measure of Near-Optimality for
Procedure Using Four Test Netwo

LP Relaxation and Ca
rks of Different Siz

pacity Improvement
es.



Flow Level*

Source of Low Medium High
Lower Bound

LP relaxation 0.321 ;131 0.043
Capacity improvement

procedure 0.223 Qa8 0.035

*The low, medium, and high flow levels are equivalent to an average nonzero
Tink flow of 1/3, 5, and 8 truckloads in the heuristic network design.

Table 2
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Cost for link a

!

fa

- .
Flow on link a, Va

Figure 1

Link Cost Function



Figure 2

Optimal Objective Function Value of
Program Pb(wb) as function of Wy



ik

jem o o o

zi'

NI

.= ) —
a
*

Figure 3

Capacity Improvement Parameter ug(t)
for 1ink beA as function of t



Shortest Path

o tm) O(m) —=D(m) —_—
o o—————— .Z _____ i &9 o
N b 4
o /
s /

Shortest Poth}\ ,“Z— Shortest Path
O(m) —=I (b) N / J(b) —= D(m)
I(b) E J(b)
link b

Figure 4

Cost Components of the Marginal Difference 8 m for Link b and Market m



b
I\
AR e
Z, |
l’,l
I
I
I
| |
J o
| |
I |
I I
, I |
2 I |
I I
! | I
— Ob,m |
z” — | -
| | | I
| . : |
: I ! ek
- % - Y, +
Vp ;’ Up Up
m
Figure 5

Determination of Improved Capacity Parameter for Link b Using Algorithm G]



\ y
\ /
\ /
\ /
/
\ /
N\ /
\ 7/
Zp (uT(h)
i
t
Figure 6

Lower Bound as a Functian of Target Value t



L (1)
P!
t -; _______ ® ® @ o © o O
[
@
® &
D
Al
1 1 i 1 1 1 1 . 1 1 | . >
lteration Counter. k
(a) Low Value of t
L* (1)
/']
t e o, e c— c— —— —— D S e e e — e
@ @ L @ @ ® o
® ®
5
@
@
-
+ @
SN O I N N N TN S N I -

Iteration Counter, k
(b) High Value of t

Figure 7

Lower Bound as a Function of Iteration Counter



Nw ‘uny3Laob |y JuawaAoadu]

Artoede) 404 Yy ‘493uUn0) UOLJRUAI]] SNSUBA 3 ‘Iuansesy A3 ewrydg-AeaN

g 94nbL4

¥ 43jJUn0) UOI}DII}|
02 Gl ol g

0)
L B S SN NN B S B B BN BN N B B N B B B p\

020
4
[y ]
o
;Tl.%w 0
O
o
G20 w
E
Z
(]
(@]
wn
00 =
™
e (,2)3

Ge'0



S97LS SNOLJEN JO SHAOMIBN [BLAL 4NO4 40y BwL] N1d) SNSUBA €3 <gunseap A3L|ewrydg-Aeay

6 24nbi4

- 19] ot = I3n] (e)

(282 XVA) spuodas NdI
ov o¢ 02

000

S00

@
o

L
T
o

—02°0

()3 ‘auojy judwaaosdwy A3oodo) O
(,2)3 ‘uoljoxojas g |outblio 7

vQ ‘1uddsy |pnQ ------
31S ‘uotjosawnul J19)|dw| pIOPUD|S — — —

—62°0

3 'ainso3W Kyijowndo- JD3N

—40€0

31 ‘voyjpidwnuy 191 dw|

1G¢0



(panuijuod) g a4nbiy
9 = ™| ‘o1 = 1| ()

(28L XVA) spuodas NdJI
00! GL ~0s G2
_ [ _

I

(1)3 ‘auojy juawdnosdw) L3100doy O
" (,2)3 'voyoxojai g7 joubuo [

vQ ‘1uddsy jonq ------
JIS ‘uoljosdwnu §I01jdw| PIOPUDIS — — —

31 ‘uopjosawnul §9)jdwy

000

—{S00

|
=
o

3 ‘ainsoapy AjjowndQ - 403N

|
O
o

]
0
Y

o

—H0€0

Geo

0¢ O



(panutjuod) 6 3ANDL
z =19 cov = |l (9)

(28L XVA) SpPu0das NdI

0]0] % 00t 00¢ (9]0 0
! _ ! _ 000
. -1600
e N e I.%.UD
A Y
N oo
- "
\
oa
\ —H6GI10
\
\
‘ S
1)
\ Hdozo
—-
\
\
[ Hgz0
:5 ‘auo|y juawaaosdw| Apoodo) O Y
(,Z)3 ‘uonoxojar 47 jowbuo ...
vQ ‘Judasy |onQ ------- \ L
J31S ‘uoljosawnul Idw| pIOPUDIS ———
uH.co:thtzzu :o:n:: RS | m
. ' Jdgeo

3 ‘aunsoaN Aj1jowndQ - 103N



(panuijuod) 6 aanbL4
9 = || ‘ov = I’N] (p)

(284 XVA) spuodds NdI

0002 00s! 000l 00S 0
: ! ! _ 000
1600
<
o
............. - 3
!IIII _ O—.o —
Ilﬂ 0
s -
lllllllllllll U i L
oo m
-. . <
\ ~02°0 o
o- 2
) o
- w
\ -{s20 S
(H3 ‘auoly juawaaosdw| Aj1o0doy O A 3
(,Z)3 ‘uoijoxojdas 41 |owbuQg ] :
vQ ‘1uddsy |onQ ------- \ ™
J1S ‘uoiljosdwnul |11 dw) pIOPUD|S —— — ... ~0E'0
31 ‘uonjosawnul pdw) —— |
1G6¢°0



S19ADT] MO[{ @34Y] DurLspn Y4AOMIBN [eLAL 1sabae 404 duwl]l NdI SNS
0L @4nb14

L9A3] MOL4 MOT (e)

A3 © 3 ‘aunseay Aji|ewtidg-JesN

(28L XVA) SPu0das NdJ
009l /024 008 0]0] 4
T R _ 1

(1)3 ‘auojy juawaaosdw| Aj1oodo) O

v

(,2)3 ‘uojjoxojas 41 |ouibuo O

vQ ‘tuddsy jonq ------
31S ‘uvoljosdwnul d|dw| PIOPUDIS ———
31 ‘vonyosawnul odw) —

- o - e

000

G000

o
o

0
o

020

T

0oco

Ge0

9 ‘sansoaw KAjijownydQ - 403N



(penutjuod) 0l aunbly

[9Aa7 mo4 unipay (Q)

(282 XVA) Spuodas NdI

_ _ I _ 000
—4 600

Z

(]

T 8

e ~010 |

e e S

s iy s i g B . S i A5 o

1/ -

LY —s103

’ —

/r =

\ . <

% —02°0 >

X ®

f po

1 c

\ —s205

()3 *3uoly uswanaxdw) A4100do) O \ 3
(,2)3 ‘uonoxojds 41 jouibso O \ y

vQ ‘luddsy |jonQ ------- (y]

31S ‘uoyosawnul oNdw| piopuwolg — ——

\
\
\
\
31 ‘voljoswnul poNdw) —— \
‘ [
]

—0€ 0

-1G¢g0



(panu1juod) Q| a4nbiy
13Ad7 mMoL4 ybip (92)

(282 XVA) spuodas NdJ

0]0] 00¢ 00¢ 00l 0]
I | | | 000
=~
~

lllllllll I S llll!l.ll.llJ.lQV.Dmo.o
/a -
\ )
o- m
\ — 010
o— O
! o
—- “f.
v —-sto 3
] —
_ =
\ =
._ —H02°0 z
. ]
! o
; w
\ . o

: \ —62°0
(4)3 ‘auoly juawaaoadw) Ay100do) O ' 3
v ( Z)3 ‘'uoijoxo|as 47 joutbiaQ O -_ -
" vQ ‘judasy |jonQ ------- \ . ™

3IS ‘uonipsawnul §1dljdw| pIOPUDIS ——— —H0€0

31 ‘uoljosdwnul j191dw)

Ge0



e

e e e e G T, . C—— — G— — — —

]
I
!
I
I
I
I
I
I
I
|
I
i
L

Ab,m-l Ab,m

Figure Al

Objective Function Value of Program ﬁg(kb,wb) as Function of ),

® Ab



	paper 1 1-60.pdf
	paper 1 end

