A Capacity Improvement Lower Bound for Fixed Charge Networ k
Operations Research; Jul/Aug 1990; 38, 4; ABI/INFORM Global

pg. 704

A CAPACITY IMPROVEMENT LOWER BOUND FOR FIXED CHARGE
NETWORK DESIGN PROBLEMS

BRUCE W. LAMAR

University of California, Irvine, California

YOSEF SHEFFI

Massachusetts Institute of Technology, Cambridge, Massachusetts

WARREN B. POWELL

Princeton University, Princeton, New Jersey
(Received January 1985; revisions received August 1986, August 1987, June, November 1988, April 1989; accepted May 1989)

Network design problems concern flows over networks in which a fixed charge must be incurred before an arc becomes
available for use. The uncapacitated, multicommodity network design problem is modeled with aggregate and disaggregate
forcing constraints. (Forcing constraints ensure logical relationships between the fixed charge-related and the flow-related
decision variables.) A new lower bound for this problem—referred to as the capacity improvement:(CI) bound—is
presented; and an efficient implementation scheme using shortest path and linearized knapsack programs is described.
A key feature of the CI lower bound is that it is based on the LP relaxation of the aggregate version of the problem. A
numerical example illustrates that the CI lower bound can converge to the optimal objective function value of the IP

formulation.

his paper focuses on a new lower bound for the
class of uncapacitated, multicommodity network
design problems whose arc cost function consists of a
fixed charge and a linear routing cost. A distinctive
feature of this lower bound is that it is based on an
aggregate problem formulation; that is, aggregate
(rather than disaggregate) constraints are used to
enforce logical relationships among the decision vari-
ables. Compared to their disaggregate counterparts,
aggregate formulations are considered weaker in the
sense that the LP relaxation of aggregate formulations
is generally looser than that of disaggregate ones. We
present theoretical and computational results, how-
ever, which show that in some circumstances this new
lower bound can be as tight as the disaggregate LP
relaxation.
The paper is organized into three sections. Section
1 formulates the fixed charge network design problem.
Section 2 presents a new lower bound to the integer
program and describes an efficient algorithm for com-
puting it. Section 3 illustrates the use of this algorithm
by a nur/r_nerical example.

1. MODEL FORMULATION

The focus of this section is on problem formulation.
It includes two parts: The first part defines the nota-
tion and formulates the network design problem as an
aggregate integer program. The second part introduces
the more common disaggregate formulation of the
problem considered here and compares it to our aggre-
gate formulation.

1.1. Integer Programming Formulation

The following notation is used to define the problem.
Let

N = the set of nodes with generic element n,
A = the set of directed arcs with generic element a,
K = the set of commodities with generic element k.

For each arc a € A, the rail and head nodes incident
to arc a are denoted by I(a) and J(a), respectively.
Also, for each node n € N, let 4, denote the set of
arcs whose tail node is n and let B, denote the set of

Subject classifications: Networks/graphs: network design problems. Programming, integer, theory: lower bound for fixed charged problems.

Operations Research
Vol. 38, No. 4, July-August 1990

0030-364X/90/3804-0704 $01.25
© 1990 Operations Research Society of America

I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arcs whose head node is n. That is
A,=la:a € Aand I(a) = n}
B, = {a: a € A and J(a) = n}.

For each commodity k € K, let O(k) and D (k) denote,
respectively, the origin and destination nodes for com-
modity k; and let d, denote the quantity of commodity
k supplied at node O(k) and demanded at node D(k).
It is assumed that d, is nonnegative.

The fixed charge for arc a is denoted by f; and the
routing cost (i.€., the cost per unit flow) for arc @ and
commodity k is denoted by c,«. It is assumed that
these coefficients are nonnegative. In addition, a
parameter used in the aggregate problem formulation
is #™=_ This parameter denotes the maximum flow
coefficient for arc a and can be taken as the sum
S« di. Note that this coefficient is not intended to

capacitate the problem; rather, it is used in the.

problem formulation to enforce logical relationships
among the decision variables.

The decision variables in the problem designate
which arcs are selected in the network design and how
much flow is carried on each of the selected arcs. For
each arc a, let y, = 1 if arc a is selected to be in the
network and let y, = 0 otherwise. Also, let x,x denote
the flow of commodity & carried on arc a and let x,
denote the sum of the commodity flows carried-on
arc a. The {x.«} and {x,} decision variables are
referred to, respectively, as the commodity specific
and the aggregate arc flows.

As partrof the problem formulation, let X denote
the set of (aggregate) arc flow vectors x = (..., X,
...) that conform to the multicommodity flow balance
equations

2 Xak = 2 Xa,k
a€A, aEB,
d. ifn=0(k)
=1{—d, ifn=D(); foranyn,k (1a)
0 otherwise
Xa= 2 Xak for any a (1b)
k
X2 0 for any a, k. (1c)

(Unless denoted otherwise, “ ¥ ” and “for any” include
all elements of the relevant set. For instance, in (1b),
“3 " means “ ¥ rex” and “for any a” means “for any
ac€A”)

The uncapacitated, multicommodity fixed charge .

network design problem (denoted FCND) can be for-
mulated as the following integer program.

Lower Bound for Network Design Problems | 705

Program FCND

min z.ﬁl * ya + 2 2 Ca,k * xa,k (Za)

xEX 4 k a

subject to

X, <ur> .y, foranya (2b)

y. € {0, 1} for any a. (2¢)
Let y* = (..., y¥*, ...) denote the optimal arc

selection vector, let x* = (..., x¥, ...) denote the

optimal (aggregate) arc flow vector, and let z*[FCND]
denote the optimal objective function value of pro-
gram FCND. (Throughout this paper, the optimal
objective function value for any problem P is denoted
as z*[P].) 7

Objective function (2a) minimizes the total system
costs, including both fixed and variable costs, for all
arcs and commodities in the network. Carrying the
minimization over set X guarantees that the arc flows
for each commodity are restricted to feasible paths in
the network. The aggregate forcing constraints (2b)
ensure that an arc carries flow only if it is selected to
be in the network. Constraints (2¢) ensure the inte-
grality of the arc selection decision variables, { y.}.

The LP relaxation of program FCND is formed by
replacing the integrality conditions (2¢) with the non-
negativity constraints

y.= 0 for any a. 3)
Observe that this relaxation is equivalent to the follow-
ing shortest path program (with flow assignment).

Program SP

min Y, (f,'ax + ca,k> < Xaj 4)
x€EX k a \Ua

Let x* = (..., X¥, ...) denote the optimal (aggregate)
arc flow vector and let z*[SP] denote the optimal
objective function value of program SP.

The equivalence between program SP and the orig-
inal LP relaxation (using (1), (2a), (2b) and (3)) can
be shown by using Balinski’s (1961) observation that
constraints (2b) will always be satisfied with equality
in the LP relaxation of program FCND. Thus, since
u™> > 0 for any a, constraints (2b) can be solved
explicitly for {y.}. Substituting {x,/us*} for {y.}
yields the formulation given in (4). (Note that con-
straints (3) can be omitted in SP because the non-
negativity of {y,} is ensured by the fact that the arc
flows in set X are required to be nonnegative.)

The analysis conducted later in this paper involves
an ensemble of shortest path programs in which the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

706 / LAMAR, SHEFFI AND POWELL

maximum flow parameter vector u™ = (..., uP*,
...) Is altered systematically. Thus, let SP(u) denote
the shortest path program of the form of (4) in which
the vector u = (..., u,, ...) is substituted for u™**.
(In this paper, it will be convenient to use both SP
and SP(u™*) to refer to the LP relaxation of program
FCND.)

The significance of basing a lower bound on pro-
gram SP is discussed next.

1.2. Aggregate Versus Disaggregate
Formulations

As mentioned earlier, the forcing constraints (2b) in
program FCND are aggregated (i.c., summed) over
commodities. Many researchers, however, have cho-
sen to formulate the fixed charge network design
problem using disaggregate forcing constraints
(Magnanti and Wong 1984). In the disaggregate for-
mulation, denoted DFCND, constraints (2b) are
replaced with

Xox < dy - y, for any a, k. %)

Observe that programs FCND and DFCND are equiv-
alent: they have the same feasible region, optimal
solution(s), and objective function value. The reason
most analysts have preferred formulation DFCND is
that the feasible region of its LP relaxation, denoted
DLP, is contained within the feasible region of pro-
gram SP (the LP relaxation of program FCND). Con-
sequently, the following relationships hold (Rardin
1982)

z*[SP] < z*[DLP]
< z*[DFCND] = z*[FCND]. (6)

In short, the disaggregate formulation yields a tighter
LP relaxation than that of the aggregate model. In
fact, in many cases the solution to DLP is also optimal
(or nearly optimal) in DFCND (and FCND).

In light of the discussion above, it is somewhat
surprising that our lower bound is based on a seem-
ingly weaker aggregate formulation. Our reasons are
twofold. First, because it is a shortest path program,
SP(u) is easy to solve; and second, as shown in the
next section, the capacity parameter vector, u, can
be adjusted to produce bounds that are significantly
tighter than the LP relaxation of the aggregate
program formulation.

2. CAPACITY IMPROVEMENT PROCEDURE

The capacity improvement (CI) procedure presented
in this section is a method of obtaining a lower bound

to z*[FCND)]. Naturally, since SP is the LP relaxation
of FCND, z*[SP] is a lower bound to z*[FCND].
However, as mentioned in connection with (6),
because FCND is an aggregate formulation, its LP
relaxation will, in general, yield a loose lower bound.
A tighter lower bound can be obtained by using a
capacity parameter vector, u, that is smaller than u™**,
Clearly, then, z*[SP(u)] = z*[SP]. The trick to this
approach is to determine conditions on u such that
z*[SP(u)] < z*[FCND). This is the idea behind the
CI procedure described in this section.

The presentation here is divided into three parts:
The first part proves the validity of the lower bound
developed by the CI procedure; the second part shows
that this lower bound is easy to compute because it
can be determined by solving a set of linearized knap-
sack problems; and the third part demonstrates how
the CI procedure can be used in an iterative fashion
to obtain a successively tighter lower bound to
z*[FCND].

2.1. Lower Bound

The following paragraphs develop a method for
obtaining a lower bound to z*[FCND)] that is at least
as tight as z*[SP]. The approach uses a value ¢,
referred to as the rarget value. Suppose, for purposes
of discussion, that ¢ is known to be an upper bound
to z*[FCND)]. This information can be used to deter-
mine an upper bound (or capacity) on the flow of a
generic arc, say arc b, in the optimal solution to
FCND. Let w;, be a trial value of such a capacity and
consider the program A,(w;) (referred to as the aux-
iliary program for arc b) obtained by adding the
constraint

Xy = Wy Q)

to program SP, the LP relaxation of FCND. If
z*[A4,(W,)] is greater than or equal to ¢ (and ¢, by
assumption, is greater than z*[FCNDJ]), then clearly
the flow on arc b cannot exceed W, in any optimal
solution to FCND. Thus, w, is a valid capacity for the
flow on arc b. The best capacity parameter (that is,
the tightest valid upper bound on flow) is identified
by finding the minimum of #;** and the smallest
value of w, such that z*[A,(W,)] is greater than or
equal to ¢. That is, let

ws(t) = min{w,: z*[As(Ws)] = ¢} ®

and define w;(¢), referred to as an improved capacity
parameter for arc b, as

us(t) = min{w,(t), u;"}.)

l |

I 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Program LK,(¢), presented shortly, finds such a
capacity parameter.)

The procedure described in the preceding paragraph
can be performed for each arc b € 4 (or any subset of
the arcs contained in A). That is, for each arc b € A4,
a separate auxiliary program A,(W,) is created and (8)
and (9) are used to determine the improved capacity
parameter for that arc. This, then, determines an
improved capacity parameter vector, u(t) = (...,
u,,(t), .o .).

Next, consider program SP(u(?)). (Remember that
SP(u(?)) is the shortest path program defined in (4)
with u™* replaced by u(¢).) Because ¢ > z*[FCND],
this means that u(¢) is an upper bound to x* (where
x* is the optimal aggregate arc flow vector in FCND)
and so, the optimal solution to FCND is contained in
the feasible region of SP(u(z)). Thus, z*[SP(u(?))] is
a valid lower bound to z*[FCND].

The discussion above assumed that ¢ was known to
be an upper bound to z*[FCND]. Now suppose that
t is an arbitrarily selected value. Then either ¢ must
itself be a lower bound to z*[FCND] or Gf ¢ >
z*[FCNDJ]) then z*[SP(u(z))] must be a valid lower
bound to z*[FCND]. This information can be com-
bined to define the capacity improvement (CI) lower
bound, 7 (t). Specifically

7(t) = minft, z*[SP(u(?))1}. (10)

Note, in addition, that since u,(¢) is less than or equal
to ™ for all arcs (see (9)), then z*[SP(u(z))] must
be greater than or equal to z*[SP], the optimal objec-
tive function value of the original LP relaxation. Thus,
if ¢ is greater than or equal to z*[SP], then so is 7 ().

In summary, the above discussion has proved the
following proposition (Lamar 1985).

Proposition. If t = z*[SP), then z*[SP] < 7(t) =
z*[FCND].

An efficient method for determining Z(¢) is
described next.

2.2. Knapsack Interpretation

The following paragraphs show how the improved
capacity parameter vector, u(¢), can be obtained by
solving a set of linearized knapsack programs. Since
such programs can be solved by a greedy-type algo-
rithm, this means that u(z) can be determined very
efficiently.

This procedure can be described by considering a
general arc b € A. Remember that the intermediate
capacity parameter, w;(t), is obtained by adding con-
straint (7) to program SP. To describe the effect of

Lower Bound for Network Design Problems [707

this constraint, let A, denote the marginal cost dif-
ference between the quantities:

i. the optimal LP routing of a unit of commodity k
from O(k) to D(k) using arc b; and

ii. the current LP routing of a unit of commodity &k
from O(k) to D(k) (which is optimal in program
SP without the constraint that arc b be used).

This marginal cost can be decomposed into the com-
ponents:

« the linearized unit cost on arc b, (11a)
« the shortest path from O(k) to 1(b), (11b)
« the shortest path from J(b) to D(k), (11¢c)
« the shortest path from O(k) to D(k). (11d)

The marginal cost A, is then computed as (11a) plus
(11b) plus (11c) minus (11d).

Observe that A, can be determined directly from
the solution of program SP. To see this, let {v.}
denote the optimal dual variables associated with con-
straints (1a) in program SP and note that, for any
commodity X, the shortest path from any node m to
any node 7 is given by Unx — Um«. Thus, combining
terms in (11) yields

Do = % + Cox + Vrpyke — Vi) k- (12)
b

Notice, however, that the right-hand side of (12) is
simply the reduced cost for arc b and commodity k
and thus is available directly from the optimal solution
to program SP.

Consider the following linear program—with deci-
sion variables {r,.} and parameter —which is also
focused on a particular arc b.

Program LK,(t)

Maximize 2 dk * Tok (133)
k

subject to

Y (de - Api) - roi <t — z*[SP] (13b)

k

0<rn,<1 foranyk (13¢)

Observe that this program is a linearized 0-1 knapsack
program and thus can be solved simply by ranking
the | K| marginal costs {As} in increasing order
(Dantzig 1957). By using efficient sorting techniques
(see, for example, Ahrens and Finke 1975), this pro-
gram can be solved very fast.

The purpose of program LK,(¢) is to determine the
value of w,(t). Let {r},} denote the optimal value of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

708 / LAMAR, SHEFFI AND POWELL

the decision variables in program LK,(¢). The com-
modities, k, with the smallest marginal cost, A, will
be associated with the decision variables with positive
optimal value in program LK,(#). These same com-
modities will be the ones routed through arc b in the
optimal solution to the auxiliary program, A,(ws).
Thus, the aggregate flow carried on arc b can be
expressed as Y di - 75 This means that, for any
given value to the parameter #, the intermediate capac-
ity parameter, w,(¢), is simply

wy(t) = z*[LKy(1)]. (14)

Once w,(t) has been determined using (14), the
improved capacity parameter, #,(z), can be obtained
by the minimization given in (9). Similarly, the
improved capacity parameter vector, u(¢) = (...,
uy(t), ...), can be computed by solving a separate
linearized knapsack program for each arc b € 4. The
lower bound, Z(¢), then can be determined using (10).

An important feature of the procedure outlined in
the preceding paragraphs is that 7 () is relatively easy
to compute. As described above, the calculation of the
coefficients {A;;} is straightforward and the solution
of program LK,(?) can be determined by a greedy-
type algorithm. This means that it is easy to determine
the vector u(z) used in program SP(u(t)). And, since
SP(u(t)) is itself easy to solve (it is a shortest path
program), the lower bound, Z(¢), can be determined
very efficiently.

The techniques just introduced can also be used
iteratively to generate a successively tighter lower
bound. This procedure is discussed next.

2.3. Iterative Procedure

The CI procedure can be used within an iterative
framework to obtain a successively tighter lower
bound to z*[FCND]. The concept here is to use the
improved capacity parameter vector from the previous
iteration to determine the vector for the current
iteration. (Thus, the material presented earlier in
this section can be viewed as the initial iteration.)
See Lamar for a proof that this procedure produces
a sequence of nondecreasing lower bounds to
z*[FCND].

To describe the iterative process, let i be the iteration
counter for i = 1, 2, Iterations i — 1 and i are
referred to, respectively, as the previous and current
iterations. For a given target value, ¢, let u'(z) denote
the current improved capacity parameter vector and
let #(t) denote the current CI lower bound to
z*[FCND]. (By definition, let u®(f) = uw™ and let
7°(@t) = z*[SP).)

Each iteration of the procedure is comprised of three
steps. First, for each arc b € A, the current interme-
diate capacity parameter, w;(t), is set equal to the
optimal objective function value of a linearized knap-
sack program of the form of (13) except that
z*[SP(u“"'(¢))] rather than z*[SP] is used in con-
straint (13b) and the marginal cost coefficients, {A,«},
are computed from the reduced costs of program
SP(u’!(2)) rather than program SP. Second, the cur-
rent improved capacity parameter for arc b, u}(¢), is
computed as the minimum of wj(¢) and u} '(¢); and
the current improved capacity parameter vector,
wi(t) = (..., uh(t), ...), is obtained by computing
ul(¢) for each arc b € A. Finally, the current shortest
path program, SP(u‘(z)), is solved and the current
lower bound, 7/(¢), is computed as the minimum of
t and z*[SP(u’(?))].

The algorithm continues until 7:(z) — #7'(¢), the
relative improvement of the lower bound between
iterations, becomes sufficiently small. The next section
illustrates the operation of the CI procedure with a
simple example.

3. NUMERICAL EXAMPLE

The purpose of the example given in this section is to
demonstrate that the CI lower bound can converge to
the optimal objective function value of the aggregate
and disaggregate integer programs (ie., 7'(t) =
z*[FCND] = z*[DFCND]). The multicommodity
network used here is shown in Figure 1. For conven-
ience, let the number of commogities, 1K|, be
denoted as k. For k = 1, 2, ..., k, commodity k
originates at node 0 and terminates at node k. Each
demand d; is assumed to be unity. Arc (0, 1) is
designated as arc b. It has a fixed charge of f, = 1 and
a routing cost of ¢, = 1 for each commodity k. All
other arcs have zero fixed charge and zero routing
costs. The maximum possible flow on arc b is
Y« di = k and so uy™ = k.

The optimal solution to the fixed charge network
design problem for the network in Figure 1 can be
obtained by inspection. It consists of sending a unit
of flow over each arc (0, k) fork=1,2,..., k and
zero flow over all other arcs. The optimal objective
function value is the cost of sending flow over arc b.
Thus, z*[FCND] = z*[DFCND] = z*[DLP] = 2,
and z*[SP] =1 + (1 /k). Note that there is no opti-
mality gap for DLP, but that the gap of SP is 100 -
(1 — (1/k))/2%. Observe also that, as k increases, so
does the optimality gap of SP which, as Cornuejols,
Fisher and Nemhauser (1977) point out, is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1. Network for numerical example.

weakness of the aggregate LP relaxation for this class
of problems. A

For any k, the optimality gap associated with the
aggregate LP relaxation can be reduced by using the
CI procedure. The target value, 7, for this example is
chosen in the range of 1 + (1/k) <1< 1 + k. (Target
values outside this range are not meaningful because
they produce a CI lower bound that is no better than
the optimal objective function value of SP.) As men-
tioned before, only one arc has a fixed charge: arc b.
Thus, only one capacity parameter needs to be

improved (i.e., reduced): u}(¢). For this simple net-

work, u,(¢) can be expressed as

L ouy (1)

up(t) = 1+ ul (@)

(15)
with, by definition, () = u[* = k. Equation 15, a
first-order difference equation, can be solved explic-
itly. This yields

t—1
1= (/@) - [1 = (= 1)/k]
where (¢)° denotes the constant ¢ taken to the ith
power.

For this example, z*[SP(u’(¢))], the optimal objec-
tive function value of program SP(u’(¢)), equals

up(t) = (16)

Lower Bound for Network Design Problems [709

(1/ui(t)) + 1 and thus can be expressed explicitly
(after rearranging terms) as

) 1 1 1
Z*[SP(ui(¢))] = t_% Sk (t——_l - ;). (17)

Thus, 7° (i), the CI lower bound in the ith iteration,
can be expressed as

Y = i S S G S |
/’(t)——mm«{t,t_1 O <t—1 E)} (18)

Figure 2 depicts 7 (¢) given in (18) as a function of
the constant target value, ¢, for several iterations of
the CI algorithm. This figure illustrates the two com-
modity case (i.e., k = 2). For k > 2, a similar set of
curves is produced, but the z*[SP] line is shifted
downward. Observe that for any choice of ¢ in the
range | + a/k)y<t<1+ k, the CI lower bound is
strictly greater than the aggregate LP relaxation.

Also, (16), (17) and (18) can easily be evaluated
as i — oo, Specifically, note that for any k, because
t>1,1/(tY — 0 as i — . Thus, in the limit, u, () =
t—1, z*[SPu~(¢))] = t/(t — 1), and

Z=(t) = min{t, t/(t — 1)}. 19)

Equation 19 is depicted in Figure 2 as the line with
i = oo, This line represents, for any given target value,
the maximum value that the CI lower bound can
attain. Observe that, in particular, for the critical target
value of ¢t = 2, the CI lower bound converges to the
optimal objective function value of the IP program,
thus eliminating the optimality gap associated with
the aggregate LP relaxation. This is true regardless of
the problem size, k.

21 - rl'lFCNDI =2’ (DFCND)=2*(DLP}

C1 LowerBound, £(1)

rvrirt11rryrr1v i1 oo ib 111
1213 14 1514 17 18 19 20 21 22 2324 2526 27 28 2930 3)

Target Value, t

Figure 2. Capacity improvement lower bound for
numerical example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

710 / LAMAR, SHEFFI AND POWELL

ACKNOWLEDGMENT

This work was supported in part by a research contract
from L. U. International to the Massachusetts Institute
of Technology and Princeton University. Additional
funds were provided by the Institute of Transportation
Studies and the Graduate School of Management,
University of California, Irvine. The authors acknowl-
edge the many thoughtful suggestions given by the
referees of this article. Their comments have resulted
in an improved paper.

REFERENCES

AHRENS, J. H., AND G. FINKE. 1975. Merging and Sorting
Applied to the 0-1 Knapsack Problem. Opns. Res.
23, 19-32.

BALINSKI, M. L. 1961. Fixed-Cost Transportation Prob-
lems. Naval Res. Logist. Quart. 8, 41-54.

CornNuEJOLS, G., M. FiIsHER AND G. L. NEMHAUSER.
1977. Location of Bank Accounts to Optimize Float:
An Analytical Study of Exact and Approximate
Algorithms. Mgmt. Sci. 23, 789-810.

DANTZIG, G. B. 1957. Discrete-Variable Extremum Prob-
lems. Opns. Res. 5, 266-276.

LAMAR, B. W. 1985. Network Design Algorithms With
Applications to Freight Transportation. Unpub-
lished Ph.D. Dissertation, Department of Civil Engi-
neering, Massachusetts Institute of Technology,
Cambridge, Mass.

MAaGNANTL, T. L., AND R. T. WONG. 1984. Network
Design and Transportation Planning: Models and
Algorithms. Trans. Sci. 18, 1-55.

RARDIN, R. L. 1982. Tight Relaxations of Fixed Charge
Network Flow Problems. Report No. J-82-3, School
of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta.

[|

l |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

