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The capacity of transportation conveyances is typically constrained by both
their volume and their weight. In many cases the operator does not have extra
conveyances and has to manage the booking for each conveyance judiciously
in order to maximize profit. This paper addresses the optimal loading of a
transportation conveyance in the context of the loading of a vessel. The problem
is formulated as a linear integer program and a special purpose branch and
bound algorithm is develcped and appligd to solve it, A micrecomputer-based
decision support system and a case study are aiso describad.

T his paper develops a methodology for optimal loading of a transporta-
tion conveyance. The issue has been addressed in the context of an
international vessel operation but the methods employed are applicable to
the loading of barges, railcars, trailers, trucks, airplanes or any other
conveyance. The method developed has been implemented in a user-
friendly microcomputer package. This paper describes the problem, the
algorithmic solutions approach, the implementation and case study.

The general problemisto load a transportation conveyance with a set of
shipments, each characterized by revenue, volume and weight. Some of
these shipments have to be taken in their entirety (if serviced at all) while
others may be broken and taken partially. The conveyance itself is subject
to both weight and volume constraints. The optimal loading problem has
been formulated as a mixed integer program in which the decision vari-
ables are to take or not to take specific shipments.

The objective parameters in the problem studied here do not include any
costs. The reason is that when the optimal loading problem is solved, the
conveyance and all the costs of operating it are known and fixed. In fact,
the algorithm calculates these costs before any optimization is performed.
The objective then is to maximize the conveyance revenue subject to the
volume and weight constraints. Since the costs are fixed, this amounts to
profit maximization. Naturally, given the solution procedure, the
conveyance's cost parameters and other problem characteristics can be
changed so one can ask various “what if?" questions regarding the opera-
tion of the conveyance.
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This paper is organized as follows: The authors describe the particular
setting for the problem addressed here, and formulate the linear program
(when all shipments can be taken partially) and describe the solution
algorithm. Then, the problem is generalized to the integer programming
case; the authors outline the scftware implementation, then present an
actual case study. Finally, the authors summarize and conclude the paper.

Problem Setting

As mentioned above, the optimal loading methodology was applied to
the case of a vessel traveling between a given set of foreign freight origins
(all within the same country) and a set of U.S. destinations. The operation
under consideration involves a monthly chartered ship which has to be
contracted separately prior to each voyage.

The problem solved directly by the algorithm described here is the
following:

Given: vessel capacity (weight and volume)
vessel cost parameters
cost per port visit for each potential vessel and port combination

shipments parameters (weight, volume, revenue, handling costs)

Find: which shipments should be taken to maximize profit

The vessel's booking agent faces the following problems:

1. Determine which vessel to charter,
2. Given the vessel characteristics, determine its routing, and

3. Given the vessel and its routing, determine which shipments should be
booked.

Typically, the vessel to be used for a particular voyage is decided upon
and contracted about one month ahead of its arrival at the firstloading port.
The information available before this decision is made includes a set of
projections of the possible booked shipments. At that point the ship broker,
who works for the shipping line, scans the international charter market
electronically. To decide on the best size and ship characteristics, the line
has to get an idea of what the expected revenue may be with each ship
type. Thus, without even entering the detailed routing, the optimal loading
model can be solved many times—once for each available vessel type—to
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determine the best one to order. Once the vessel is ordered, the freight
booking agent in the origin country, together with the lines, has to de-
termine which ports to call on there. A port call includes a fixed charge (for
port entry, wharfage, and other port services) in addition to the vessel time
charges (the daily charter on a vessel can range from less than $5,000 to
more than $30,000, depending on the ship size, condition, and the condi-
tions in the international market). The fixed charges for port entry are
handled exogenously in the model described here. In other words, the
model does not determine internally which port should be visited. Instead,
the user can easily and quickly input the routing, and the model will then
determine the vessel cost (using the vessel cost parameters in conjunction
with the ports’ cost parameters), optimize the loading and report the vessel
revenue and profit. By trying several combinations of loading ports, the line
decides on the best ship routing. (Note that the cost of a port stay depends,
to some extent, on the amount and type of freight involved. These relation-
ships are not modeled here because they are not strong and the data is not
available until the shipment actually shows up.)

Lastly, when the routing is fixed, the line starts to confirm the booking of
shipments. At this point, some bookings have aiready been confirmed
(based on prior model runs, experience, or long term contractual commit-
ments) and they represent “must take" loads. Other shipments are being
called in by customers, or solicited by the freight booking agent. In any
case the line has to decide which ones to take. This is where the data
available is most accurate and the optimization results in actual confirma-
tions. In actual operations, some shipments are not confirmed until the last
minute so that, if more profitable shipments become available later, those
can be taken instead. This means that the model may be run many times in
the few days before all cargo is positively confirmed and loaded on the
vessel.

In actual operations these stages are not distinct. For example, the
vessel booking agent will typically work closely with the commercial agent
at the origin country to determine both vessel type and routing simultane-
ously. Similary, the routing and the booking confirmation process may
overlap as the line tries to maximize profit. This is demonstrated in the case
study.

At the heart of the computer model is the ship loading optimization and
the ability to change the parameters of this optimization quickly and easily.
The next two sections discuss the optimization methodolegy, and the one
after describes the software.
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The Linear Program

Let us first discuss the continuous ship loading problem, where frac-
tional shipments can be taken. This problem is easier than the one where
some shipments are subject to an "all-or-nothing"” policy. The importance
of discusing this problem is twofold: first, this is the problem which is
typically solved in the process of deciding on the ship type. When this
decision is made, the shipment information is not accurate enough and the
line does not know which shipments are subject to the all-or-nothing policy.
Second, and more important, the solution method for the continuous prob-
lem is at the heart of the solution to the integer program.

To formulate the optimal lcading problem, assume that there are n
available shipments numbered arbitrarily 1,...,n. Now define the following
variables as follows:

xj = the fraction of shipment i confirmed for loading, i=1.....n
pij = revenue of the i-th shipment

vi = volume of the i-th shipment
wj = weight of the i-th shipment

V = total volume available on ship

W = total weight available on ship

The optimal loading problem, LP, can now be described as follows:

n
LP maxZ(x,...xn) = Z piXj (1)
i=1
subject to: 1
Z vix; < V (2)
i=1
2l
Z wx, = W (3)
j=1
Osx<1 vi=1..n (4)

This is a simple linear program. Note that if either the volume or the weight
constraint were not present, the problem would have reduced to the
well-known knapsack, which can be solved trivially. 2 In fact, our proce-
dure for obtaining a good starting solution draws from this similarity.
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Program LP can, of course, be solved by a direct application of the
simplex method. In this case, the size of the resulting basis will be (n + 2) x
(n + 2) counting the volume constraint, the weight constraint, and the n
upper bound constraints on the decision variables. Since n is typically in
the hundreds, using such an approach may take too long on a micro-
computer. This is true, in particular, considering that the solution proce-
dure will have to be used iteratively within a method for solving the integer
program and since the resulting software has to be used interactively.

A well-known alternative approach for dealing with just such problems is
the simplex with bounded variables.* In this method, the upper bounds on
the decision variables are treated in a way analogous to the non-negativity
constraints on these variables. Thus the basis is of size 2 x 2 regardless of
n. A variables x; is considered out of the basis when it is either at zero or at
its upper bound (xj = 1 in our case).

A pivot with the bounded variable simplex method is similar to the
standard pivot but with a few modifications. In particular, the condition for
optimality (maximum) is for every non-basic variable at zero to have a
non-positive objective coefficient (as usual) and for every non-basic vari-
able at its upper bound to have a non-negative objective coefficient. To
improve a non-optimal solution, a pivot may decrease the value of a
non-basic variable atits upper bound if its objective coefficient is negative.
Unlike in standard simplex, here a non-basic variable can move its upper
to its lower bound and remain non-basic. Only if a basic variable reaches a
bound as a result of increasing or decreasing the value of a non-basic
variable will an actual change of basis take place.

Note that it is not necessary to check for unboundedness (if the inputs
are correct) since the bounds will always prevent it. Note also that the
simplex described here does not require a two-phase procedure due to
the form of the volume and weight constraints. An initial solution mav be
found by fractional variables and the rest, say to zero (a better procedure is
described below). To start pivoting, the two fractional variables deter-
mined by the initialization procedure are simply forced into the basis in the
first two pivots (driving out the two slacks).

The only possible drawback of this algorithm is that when started with a
random basis it may take a large number of pivots to find optimality. To
alleviate this concern we determine an initial solution (basis) by using a
procedure reminiscent of that utilized to solve knapsack problems. The
idea is to sort all shipments by an occupancy index which is defined, for
each shipment, as the bigger of the ratio of the shipment's profit to the
portion of volume or weight it occupies. In other words, the index for
shipment |, /j, is given by:
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Ii = pj -max (VL,WW,_) (5)

Shipments are taken from the top of the list down (i.e., X is set to one for
these shipments) until the ship capacity (either volume or weight) is ex-
hausted. The last shipment, then, is taken in part to exhaust the applicable
constraint. The following is a pseudo-code for this procedure.

Procedure Initialize_Simplex
Begin
Sort all shipments by highest to lowest Ij;

Renumber shipments in sorted list in order, so that highest I is for shipment number 1

Let Vreye =V; Wrene = W, Z=0,
Fori=11tondo:
If vi < Vrewp and w; € Wreiyp then
Z=2Z+pi
Vreme = Vremp Vi
Wremp = Wremp -wis
xi=1,
Else
Xi=min M.KT—E”—F
Wi Vi
Z=2Z+xpi
Go 1o end of procedure
End_if
End_for

End Initialize_Simplex

Several other obvious variations to this procedure (e.g. sorting by a
volume-based ratio or a weight-based ratio alone or using pj - min {V Vi
W/w,-})/were tried but proved to be less efficient than the one described

above.
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The Iinteger Program

Many of the shipments booked have to be taken either in their entirety or
not at all. The reason is that shippers are often unwilling to split shipments
due to the inconvience asscciated with extra paperwork and more difficulty
in tracking. In such cases, an additional constraint should be added to LP,
to wit:

Xj = {0,1} for some i (6)

The program (1), (2), (3), (4), (6) is referred to here as IP. It is a mixed
integer program which can be solved by a variety of methods including
dynamic programming, cutting planes and branch-and-bound.* We have
focused on branch-and-bound (or implicit enumeration) due to its versatil-
ity and simplicity.

The branch-and-bound method works with a given feasible solution
(incumbent). At every paint in the solution process, the algorithm focuses
on a candidate problem. At this stage, some of the integral x; values are
determined and others are "free" (i.e. yet to be determined). The algorithm
works here by relaxing the integrality constraint (6) on the free variables
and using the simplex method described in the previous section to solve
the resulting LP. If the resulting solution satisfies certain conditions
mentioned below, then this candidate problem is considered fathomed.
Otherwise a fractional xj is to xj = 0 and xj = 1, removing, in effect, the ith
shipment from being “free” to being “determined.” This “branching” re-
sults in two problems which can, in turn, be replaced with respect to their
free ariables and the process repeats itself. The various candidate prob-
lems can be organized in a binary tree whose nodes each represent a
problem with xj = 1 for some i, xj = O for others and x; free (undetermined)
for the rest.

The fathoming process is central to the branch-and-bound method
since it permits an explicit enumeration of the entire set of candidate
problems (the “tree"”). A given node of the branch-and-bound tree can be
fathomed if one of the following three conditions takes place:

1. Either V or W is exceeded by the set of xj = 1 at this node,

2. the objective value of the LP there is not greater than the objective value
of the incumbent (this is the bounding mechanism),

3. the LP at this node solution satisfies the integrality constraint.
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If fathoming is due to the third criterion above and the objective function
value at that point is higher than that of the incumbent, the new solution
becomes the incumbent. In any event, if fathoming occurs at all, the current
node of the branch-and-bound “tree"” is not branched upon any more and
the algorithm branches on a different node. The algorithm continues in this
fashion until all nodes are fathomed. Since the number of nodes in the
branch-and-bound tree is finite, the algorithm is guaranteed to generate a
solution in a finite number of iterations. The incumbent at that point is the
globally optimal solution. Three elements influence greatly the perform-
ance of this branch-and-bound algoritnm: the choice of initial incumbent,
the branching procedure and the data structures used. These are de-
scribed below.

Initial Solution

A good initial incumbent will have a high objective function value, caus-
ing early fathoming of the branch-and-bound tree by tight bounding (see
the second condition above), thus expediting the algorithm. Qur initializa-
tion method is a medification of the afcrementioned LP initialization
method. We start by relaxing the problem and solving the resulting LP. All
the shipments for which xj = 1 in the solution are labeled as taken, while
any no'n-integer shipment and shipments not taken constitute the set of
potential shipments. Essentially, we now use the same ranking procedure
described in connection with the LP with two exceptions. It works only on
the potential shipments and, instead of terminating with a fractional ship-
ment, we continue searching down the occupancy index list for a shipment
which can best fit in its entirety within the weight and volume constraints.
The value of the objective function, once the ranked listis exhausted, isthe
initial incumbent value. The pseudo-code for this program is the following:

Two other similar initialization heuristics were investigated. The first uses
the procedure outlined above but skips the simplex solution. In other
words, all shipments are included in the set of potential shipments. The
second heuristic was also similar to that described above but used various
other sorting criteria to rank the potential shipments. None of these proce-
dures performed as well as the one shown.

Branching Criterion

At each stage of the branch-and-bound algorithm, one can make a
choice regarding which node of the three to branch on. A good rule for
choosing a branching node can expedite the algorithm significantly by
leading to good incumbents, thereby causing early fathoming.
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Procedure Initial_Incumbent
Begin
Solve LP by the simplex methed;

Set any fractional x; to x=0;

n n n
Set Wrepp = W - ., wixii Vremp =V Y vixa Z=Y, pixi

=l i=1 i=1
Sort all shipments by I; and renumber from highest to lowest;
For i=1 o a while x;=0 do
If v; < Vremp and wi < Wresp then
Z=Z+ps
Vreue = Vresr -vi;
Wreme =Wremp -wi;
Fi= o
Else if (x; can be fractional) then
x; = min (YIE& : ‘_‘fIE.!iE.)'
Vi W
Z=Z+pix;
Go o end of procedure;
End_if;
End_for;

End Initial_Incumbent.

In general, one can think of many strategies to choose the next node to
branch on. If these nodes are stored in a candidate list then the list can be
managed, say, by a FIFO (first-in-first-out) rule, LIFO (last-in-first-out) rule,
or some other list discipline. Alternatively, the priority can be based on the
tree's geometry, as in depth-first or breadth-first search. A third alternative
is to create a special search criterion which measures the fathoming
potential of a node and then branches on nodes in order of their highest
potential.

A FIFO discipline is managed as a queue. In general, if offers no
particular advantages over a random choice of nodes. A LIFO discipline
offers some advantage in terms of being able to reconstruct the next
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problem branched from the last one. A similar advantage occurs with a
depth-first search where the algorithm backtracks up each branch after
fathoming a lower node. A breadth-first procedure can be advantageous in
cases where at each level of the tree one is branching on the same
variable. This procedure will save core, since one can know which vari-
ables are set and which are free just by tracking the location of a node.
Thus prior solutions can be easily reconstructed. The advantage of all
these branching criteria is irrelevant in our case since our initialization
procedure was found to be more effective than an initial solution based on
any downstream nodes. In other words, our procedure did not profit from
the ability to reconstruct any prior solution.

Thus, in an environment in which none of the structure-driven branching
disciplines appears to be particularly effective, it seems intuitive that a
good search criterion based on the potential of each node may help trim
the tree efficiently. The criterion used here is based simply on the value of
the relaxed objective function. Thus the next node to branch on is always
the one with the highest relaxed objective value. The rationale here is that
there may be more “potential” for good sclutions in branches emanating
from such a node than from any other node. And indeed, tests on random
data sets indicate that branching based on this largest-upper-bound-next
procedure needed to enumerate on average only half the number of nodes
in the branch-and-bound trees that were evaluated by all other procedures
tested (the performance of all of which was very similar to each other).

Another decision which has to take place in the proces of branching is
the choice of which variable to branch on once it is determined that a given
node is not fathomed. Naturally, there are two candidates—the two frac-
tional variables in the LP solution. Numerical experiments here have de-
monstrated a slight advantage towards choosing the variables with the
higher occupancy index (see equation 5).

Data Structures and Algorithm

To execute the algorithm efficiently and save on core usage, one can use
several data structures. The information kept for each partial solution at a
given node of the branch-and-bound tree includes the variables already
branched (and their values) and the next variable to branch on. To save
memory, the information regarding nodes already examined is discarded
by rewriting the same memory locations with information regarding new
nodes. This is done by simply setting the index of the first descendent of a
node which needs work to the index of its predecessor. If the second
descendent is also a candidate, its node number is set to one more than
the current total number of candidates (this number needs to be continu-
ously updated).
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nodes which require branching in a candidate list. This list is sorted by the
branching criterion—in our case the value of the LP solution. The list is
updated whenever a node is branched on (the next node becomes the top
ofthe listand whenever it is determined that a ncde is not fathomed. Such a
node will require branching and thus has to be properly inserted in the
sorted list. Numerical experiments with several structures here, such as
binary search trees® and various threads® have concluded that binary
search trees have performed best.

As mentioned in the previous section, experimentation has shown that it
is not necessary to keep and transfer from a predecessor node to its
descendents any information regarding the relaxed solution. As it turns
out, the procedure Initialize__Simplex typically gives initial solutions (to the
relaxed problem) that are not worse than those given by the predecessor's
solution. In addition, keeping the simplex solutions requires additional
memory.

A complete pseudo-code for the branch-and-bound algorithm can be
outlined as follows:

The Software Package

A software package for solving the optimal vessel loading problem was
developed to run on microcomputers in the IBM/DOS environment. The
package was programmed using the Clarion Professional De—:‘\./eloper7 and
Borland's Turbo C compiler.® Clarion was used to create and manage the
data base operations and to build a sophisticated user interface, while the
C code was used to implement the computation-intensive optimization
routines. The integration of the C code into the Clarion environment proved
to be smooth and simple.

While the entire implementation could be achieved in a conventional
programming language such as C, the use of a development package cut
development time dramatically. Before settling on Clarion, three alternative
development environments were tested: Paradox 2.0, R:Base/DOS, and
Advanced Revelation 1.0. Paradox and R:Base/DOS were easy to use but
were limited in the flexibility of their generated user-interfaces and were
slow. Clarion and Advanced Revelation were comparable in their effi-
ciency and sophistication.

The coding of I/0 and data-base management usually accounts for a
large share of the development time of any software package, but, by using
a development package such as Clarion, this overhead can be greatly
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Procedure Branch_ and_Bound;
Begin
Solve the Linear Program by using the simplex method;
If (all integrality constraints are satisfied) then
Retumn; (®* The solution is opumal!*)
Else;
Put the solution in the candidate list and point 1o it as the lop node;
End_if;
Set incumbent by using Inital_Incumbent;
‘While (candidate list is not empty) do
Let the top node be current_node:
Delete current_node from candidate list and update list:
Branch on current_node by setting one of the fractional variables 100 and 1,
creatng two descendents;
For cach descendent i do
Modify Z, V, W given the variables already determined;
Relax integrality on the [ree variables and solve by the simplex methiod;
1f not fathomed, then
Tag the next variable to branch on;
If (i is the [irst descendent not fathomed) then
Reuse its ancestor location;

Elsc
Create a new node location for §

End_il;
Add i o the candidate list and update list;
Else
If (solution is integer) and (current objective > incumbent value)
then
incumbent value = current objective;
incumbent solution = current solution;
fathom all nodes with objective < incumbent value in candidate
list;
End_if;
End_if;
End_for;
End_while;
Optimal solution = incumbent solution;
End Braunch_and_bound.
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reduced. In fact, the ease and speed of programming in any of the special
purpose environments blurs the line between software design, prototyping
and final code production. Development becomes a single, continuous
effort and takes a very short time. The generation of user screens, comp-
lete with windows, menus, and context-sensitive help is a matter of days.
Similarly, report generation, processing and editing of data, and printer
interface become almost trivial to code.

When using a code generator such as Clarion, the software architecture
is predetermined to a large degree. In cur model, data is stored in “tables,”
each of which is a disk file. The model was designed with two types of
tables, one for scenarios and the other for underlying data. Both types of
tables can be edited by form entries, or viewed through generated screen
and hard copy report. The underlying tables hold information which rarely
changes, such as distances, ship class specifications, port cost and
operating parameters, etc.

A scenario is a set of three scenario tables. The first one contains
information on bookings, where each record holds information on a book-
ing’s availability, weight, volume (cube), profit (FIO™), origin port, destina-
tion port, divisibility, shipper, and consignee, in addition to describing its
exact contents and identification number. A second table contains infor-
mation on the vessel to be considered in the scenario, its type, fuel
efficiency and the price of fuel. The third scenario table includes the routing
of the vessel under consideration. It lists the ports to be visited and the
times of arrival and departure for each port. Each scenario is kept ondiskin
its own directory. To use the software, a scenario must be loaded into the
workspace, where it can be modified, viewed, or optimized. Scenarios can
be read, saved, or deleted from within the software package.

Case Study

To test the model in a realistic setting, data frcm a chartered vessel
operation between Brazil and U.S. gulf ports was used. To mask the
characteristics of the actual shipment and to generate enough data for a
variety of cases, the original data were used only to estimate distribution
functions parameters. These distributions of shipment size and shipment
density were then used to generate simulated shipment data. Similarly, the
vessel characteristics shown here are similar but not identical to the vessel
characteristics used in the actual operation.

*FIO stands for "Free-In-Out” meaning the profit on the ocean line-haul portion of the voyage
only, excluding any port or loading/unloading charge at either origin or destination.
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Now consider a case where 42 possible shipments are available in three
'Brazilian ports (Rio de Janeiro, Santos, and Sao Paulo). These shipments
are destined to two U.S. ports (New Qrleans, Louisiana and Mobile,
Alabama). The origin-destination distribution of the number of shipments is
the following:

Table 1. Shipment Origin-Destination Matrix

To: New Orleans Mobile
From:
Rio 15 0
Santos 17 0
Sao Paulo 0 10

The weights for each shipment were drawn from a normal distribution
with a mean of 500 metric tons (MT) and a standard deviation of 170 MT.
Shipment densities were drawn from a normal distribution with a mean of
2.0 metric tons per cubic meter (MT/M3) and a standard deviation of 0.9
MT/M3. The revenue for each shipment was drawn from a uniform distribu-
tion between $20/MT and $60/MT. (This is "Free-In-Out” or FIO revenue,
including only the price of the ocean voyage porticn of each shipment.)
Using 0.50 probability, half the shipments were assumed to be indivisible
while the other half was assumed to be divisible if the need arose. Port entry
fees and other relevant costs were accounted for at a realistic level.

Given these shipments, the booking agent had to choose between two
possible routings: either visit Rio de Janeiro and Santos only, taking what-
ever cargo is most profitable to New Orleans (scenario A), or visiting all
ports, including Sao Paulo and Mabile (senario B). The available vessel
had a net weight capacity of 14,250 MT and a net cubic capacity of 13,300
M3. The ship consumes bunker fuel at a rate of 20 MT/day at 12 knots and
36 MT/day at the maximum speed of 14 knots (this fuel costs $100/MT).
The ship also consumes two tons of diesel fuel for every day in operation
(this fuel costs $160/MT.

Tables 2 and 3 below depict the model's summary report screen for the
two routings involved. These tables show the revenues, costs and profits
for visiting only three ports and for visiting all five ports, respectively.

Note that the revenue for going to five ports ($670,195) is significantly
higher than the revenue associated with the three port trip ($596,816) even



22

The Annals of the Society of Logistics Engineers, Vol, 2, No. 1

Table 2. Qutput Screen for the Three Port Scenario

Scenario June Port stops 3
Vessel Freedom Port costs $55,000
Route length 6,020 NM
Daily charter $7.,000
Ballast bonus 540,000
Insurance $10,000
Pre-booked FIO 0
Pre-booked 0 Opt. FIO 96.81
Available to opimizer 32
Booked by optimizadon 28 Total FIO $596,816
Speed: 12 knots Fuel cost 542,000
Duraton-mavel 21 days Diesel cost $11,200
Duration - in port 14 days Vessel charter 5245,000
Fuel consumed 4200 MT Total costs 5403,200
Diesel consumed TOMT Net profit $193,616
Press Esc to return from viewing this screen report.
Table 3. Output Screen for the Five Port Scenario
Scenario June Port stops 5
Vessel Freedom Port costs $95,000
Route length 6,486 NM
Daily charter $7,000
Ballast bonus $40,000
Insurance $10,000
Pre-bocked FIO 0
Pre-booked 0 Opt. FIO $670.195
Available 1o opimizer 42
Booked by optimizadon 23 Total FIO $670,195
Speed: 12 knots Fuel cost $46,000
Duration-travel 23 days Diesel cost $13,760
Duration - in port 23 days Vessel charter $322,000
Fuel consumed 4600 MT Total costs $526,760
Diesel consumed 86 MT Net profit $143,435

Press Esc to return from viewing this screen report,

though the number of shipments booked by the optimization is 28 in both
cases. Naturally, the reason is that the optimization can choose a better set
of shipments when presented with more options. Despite the higher FIO
revenue, however, it is more profitable to visit only the three ports rather
than the five, due to the higher cost involved in the latter trip.

In both cases shown here, the algorithm chose the lower speed (12
knots) over the higher speed due to the excessive fuel consumption at the
higher speed (otherwise the cost with the higher speed would have shown
in the report.)
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Summary

This paper presents an algorithm for optimal loading of a transportation
conveyance. The objective is to maximize the voyage's profit subject to
both weight and volume constraints. The problem is formulated as a mixed
integer program and the solution algorithm is based on a branch-and-
bound methodology with a relaxation which is solved by a special-purpose
LP algorithm. While using the standard branch-and-bound method, the
algorithm developed here is unique in its efficient initialization of the re-
laxed problem. The benefits of this initialization are compounded in the
search strategy.

The algorithm has been implemented in a software package. The
package has been used to solve for the optimal loading of vessels operat-
ing between Brazil and the U.S. Gulf Coast. While the model solved the
optimal loading problem given the vessel and the routing, it is useful in
determining the vessel type as well as its routing. This can be accomp-
lished through repeated applications of the same model in an interactive
environment. Interestingly, the use of microcomputers in an interactive
environment places a renewed premium on algorithmic efficiency. This
arises from the desire to provide immediate user feedback which is
needed for continuous interactive sessions.

The basic optimization approach utilized here is applicable to many
similar problems encountered in the transportation arena. These problems
are characterized by indivisible shipments and both volume and weight
constraints.

Another approach to the problem at hand could have been to incorpo-
rate the routing decision (and the vessel type decision) within the optimiza-
tion process. This would have created a more difficult integer program
involving fixed charges and tour constraints. While this may be the subject
of further research, the utility of such a tool is limited since it is much less
likely to be accepted by the potential user. The reason is that it does not
leave any decision controi with the user, thus requiring a significant leap of
faith on his part. In other words, the user may want more control over the
"big" decisions such as vessel type and routing. This dichotomy of deci-
sion domain allocation between the computer and the user can also be
generalized to many other situations.
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